Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,791 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import sys
import copy
import argparse
import numpy as np
from tqdm import tqdm
import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')
from util import utils
from util import perplexity
from pytictoc import TicToc
pyt = TicToc() #create timer instance
def main_eval(args):
# loading hyperparameters
hparams_path = f'./hparams/SE/{args.model}.json'
hparams = utils.loadjson(hparams_path)
# find path
if (args.selection is not None) and ('{}' in args.selection):
args.selection = args.selection.format(args.dataset, args.model)
# find results path
args.save_path = os.path.join(args.save_path, f'{args.dataset}/{args.model}/layer{args.layer}/')
# create new folder under results path to save new results
output_dir = os.path.join(args.save_path, 'perplexity/')
utils.assure_path_exists(output_dir)
## LOAD MODEL ######################################################
# load model and tokenizer
model, tok = utils.load_model_tok(model_name=args.model)
# load activation function for MLP components of model
activation = utils.load_activation(hparams['activation'])
# load dataset
if (args.edit_mode == 'in-place') and (args.dataset == 'mcf'):
reverse_selection = True
reverse_target = True
else:
reverse_selection = False
reverse_target = False
print('Loading dataset:', args.dataset)
ds, _, _ = utils.load_dataset(tok, ds_name=args.dataset, selection=args.selection, reverse_selection=reverse_selection, reverse_target=reverse_target)
# find all requests and case_ids
dataset_requests = utils.extract_requests(ds)
case_ids = np.array([r['case_id'] for r in dataset_requests])
## LOAD DATA #######################################################
# find sample files to run (sample files named with case_id)
sample_files = np.array([f for f in os.listdir(args.save_path) if f.endswith('.pickle')])
if args.shuffle: sample_files = utils.shuffle_list(sample_files)
print('Number of pickle files:', len(sample_files))
print('Running files:', sample_files)
if len(sample_files)==0:
print('No files to run')
sys.exit()
## PROCESSING #######################################################
perplexity_arguments = {
'token_window': args.token_window,
'batch_size': args.batch_size,
'verbose': True
}
# find or generate cache for perplexity measures of other samples
cache_ppl_file = os.path.join(
args.cache_path,
f'inference_ppl_{args.dataset}_{args.model}_tw{args.token_window}.pickle'
)
cache_ppl_contents = perplexity.cache_ppl(
model,
tok,
dataset = args.dataset,
cache_ppl_file = cache_ppl_file,
selection = args.selection,
reverse_selection = reverse_selection,
**perplexity_arguments
)
assert np.array_equal(case_ids, cache_ppl_contents['case_ids'])
if args.eval_oap:
cache_ppl_oap_file = copy.deepcopy(cache_ppl_file)
cache_ppl_oap_file = cache_ppl_oap_file.replace('.pickle', '_static_context.pickle')
cache_ppl_oap_contents = perplexity.cache_ppl(
model,
tok,
dataset = args.dataset,
cache_ppl_file = cache_ppl_oap_file,
static_context=args.static_context,
selection = args.selection,
reverse_selection = reverse_selection,
**perplexity_arguments
)
assert np.array_equal(case_ids, cache_ppl_oap_contents['case_ids'])
else:
cache_ppl_oap_contents = None
cache_ppl_oap_file = None
from . import eval_utils
evaluator = eval_utils.PerplexityEvaluator(
model,
tok,
layer = args.layer,
hparams=hparams,
ds = ds,
edit_mode = args.edit_mode,
token_window = args.token_window,
batch_size = args.batch_size,
num_other_prompt_eval = args.num_other_prompt_eval,
num_aug_prompt_eval = args.num_aug_prompt_eval,
eval_op = args.eval_op,
eval_oap = args.eval_oap,
eval_ap = args.eval_ap,
eval_aug = args.eval_aug,
op_cache=cache_ppl_contents,
oap_cache=cache_ppl_oap_contents,
verbose = True
)
for sample_idx in range(len(sample_files)):
print('\n\nSample {:}/{:}'.format(sample_idx+1, len(sample_files)))
pyt.tic() #Start timer
try:
# load result pickle file
evaluator.load_sample(args.save_path, sample_files[sample_idx])
if args.exclusion:
if not evaluator.first_success_criteria():
continue
# evaluate target requests
evaluator.eval_targets(force_recompute=False)
if args.exclusion:
if not evaluator.second_success_criteria():
continue
# main evaluation
evaluator.evaluate()
# save results
evaluator.save_sample()
# clear sample
evaluator.clear_sample()
except Exception as e:
print('Failed for', sample_files[sample_idx])
print(e)
pyt.toc() #Stop timer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--model', default="gpt-j-6b", type=str, help='model to edit')
parser.add_argument(
'--dataset', default="mcf", type=str, choices=['mcf', 'zsre'], help='dataset for evaluation')
parser.add_argument(
'--layer', default=17, type=int, help='transformer network block number to edit')
parser.add_argument(
'--selection', type=str, default=None, help='output directory')
parser.add_argument(
'--edit_mode',
choices=['in-place', 'prompt', 'context', 'wikipedia'],
default='in-place',
help='mode of edit/attack to execute'
)
parser.add_argument(
'--static_context', type=str, default=None, help='output directory')
parser.add_argument(
'--cache_path', default='./cache/', type=str, help='path to cache')
parser.add_argument(
'--token_window', type=int, default=50, help='token window for perplexity measures')
parser.add_argument(
'--batch_size', type=int, default=64, help='batch size for inference')
parser.add_argument(
'--shuffle', action="store_true", help='shuffle samples to evaluate')
parser.add_argument(
'--eval_op', type=int, default=1, help='eval of attack context + prompts')
parser.add_argument(
'--eval_oap', type=int, default=0, help='eval of static context + prompts')
parser.add_argument(
'--eval_ap', type=int, default=0, help='eval of attack context + prompts')
parser.add_argument(
'--eval_aug', type=int, default=0, help='eval of attack context + prompts')
parser.add_argument(
'--num_other_prompt_eval', type=int, default=500, help='number of other prompts to evaluate')
parser.add_argument(
'--num_aug_prompt_eval', type=int, default=500, help='number of augmented prompts to evaluate')
parser.add_argument(
'--exclusion', type=int, default=1, help='eval of attack context + prompts')
parser.add_argument(
'--save_path', type=str, default='./results/tmp/', help='results path')
args = parser.parse_args()
# convert boolean parameters
args.eval_op = bool(args.eval_op )
args.eval_oap = bool(args.eval_oap)
args.eval_ap = bool(args.eval_ap )
args.shuffle = bool(args.shuffle )
args.exclusion = bool(args.exclusion)
# run main
main_eval(args) |