Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,718 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 |
import os
import copy
import torch
import numpy as np
import random as rn
from tqdm import tqdm
from util import utils
from util import extraction
from util import evaluation
from util import perplexity
from util import measures
from stealth_edit import edit_utils
from stealth_edit import compute_wb
from stealth_edit import compute_subject
from stealth_edit import editors
class FeatureSpaceEvaluator:
def __init__(
self,
model_name,
hparams,
edit_mode,
wiki_cache = None,
other_cache = None,
verbose = True
):
self.model_name = model_name
self.hparams = hparams
self.edit_mode = edit_mode
self.verbose = verbose
self.wiki_cache = wiki_cache
self.other_cache = other_cache
self.model = None
self.tok = None
self.new_weight = None
self.new_bias = None
self.layer = None
self._load_model_tok()
def load_sample(self, layer, sample_path=None, sample_file=None):
if sample_path is None:
file_path = sample_file
else:
file_path = os.path.join(sample_path, sample_file)
# load result pickle file
self.store_results = utils.loadpickle(file_path)
# find layer to evaluate
self.layer = layer
# find edited/attacked w1 weight and biases
if self.model_name in edit_utils.mlp_type1_models:
self.new_weight = self.store_results['new_weight'].to(self.cache_dtype)
self.new_bias = self.store_results['new_bias']
elif self.model_name in edit_utils.mlp_type2_models:
self.new_weight = self.store_results['new_weight_a'].to(self.cache_dtype)
self.new_bias = 0
else:
raise ValueError('Model not supported:', self.model_name)
self.sample_results = {}
self.sample_results['case_id'] = int(sample_file.split('.')[0])
def _load_model_tok(self):
""" Load model and tokenzier, also weights for layer to edit
"""
self.model, self.tok = utils.load_model_tok(model_name=self.model_name)
if self.verbose: print('Loaded model, tokenizer and relevant weights.')
# load activation function
self.activation = utils.load_activation(self.hparams['activation'])
# find layer indices
self.layer_indices = evaluation.model_layer_indices[self.model_name]
def cache_wikipedia_features(self, cache_file=None):
""" Load or cache wikipedia features
"""
if cache_file is not None:
self.wiki_cache = cache_file
if (self.wiki_cache is not None) and (type(self.wiki_cache) == str):
self.wiki_cache = utils.loadpickle(self.wiki_cache)
else:
raise NotImplementedError
self.wiki_cache['features'] = torch.from_numpy(self.wiki_cache['features']).cuda()
def cache_other_features(self):
""" Load or cache features of other samples in the dataset
"""
if (self.other_cache is not None) and (type(self.other_cache) == str):
self.other_cache = utils.loadpickle(self.other_cache)
else:
raise NotImplementedError
# find type of features
self.cache_dtype = self.other_cache[self.layer_indices[1]].dtype
def eval_other(self):
""" Evaluate with feature vectors of other prompts in the dataset
"""
# find responses to other feature vectors
if self.edit_mode == 'in-place':
case_mask = self.other_cache['case_ids'] == self.store_results['case_id']
responses = self.activation.forward(
torch.matmul(
self.other_cache[self.layer][~case_mask],
self.new_weight
) + self.new_bias
)
else:
responses = self.activation.forward(
torch.matmul(
self.other_cache[self.layer],
self.new_weight
) + self.new_bias
)
# find mean positive response
self.sample_results['mean_other_fpr'] = np.mean(responses.cpu().numpy()>0)
def eval_wiki(self):
""" Evaluate with feature vectors of wikipedia vectors
"""
responses = self.activation.forward(
torch.matmul(
self.wiki_cache['features'],
self.new_weight
) + self.new_bias
)
# find mean positive response
self.sample_results['mean_wiki_fpr'] = np.mean(responses.cpu().numpy()>0)
def evaluate(self):
""" Main evaluation function
"""
self.eval_other()
self.eval_wiki()
def clear_sample(self):
self.store_results = None
self.new_weight = None
self.new_bias = None
self.layer = None
self.sample_results = None
class PerplexityEvaluator:
def __init__(
self,
model,
tok,
layer,
hparams,
ds,
edit_mode,
token_window = 50,
batch_size = 64,
num_other_prompt_eval = 500,
num_aug_prompt_eval = 500,
eval_op = True,
eval_oap = False,
eval_ap = False,
eval_aug = False,
op_cache = None,
oap_cache = None,
verbose = True
):
self.model = model
self.tok = tok
self.layer = layer
self.hparams = hparams
self.ds = ds
self.edit_mode = edit_mode
self.verbose = verbose
self.op_cache = op_cache
self.oap_cache = oap_cache
self.num_other_prompt_eval = num_other_prompt_eval
self.num_aug_prompt_eval = num_aug_prompt_eval
self.store_results = None
self.sample_results = None
self.eval_op = eval_op
self.eval_oap = eval_oap
self.eval_ap = eval_ap
self.eval_aug = eval_aug
self.perplexity_arguments = {
'token_window': token_window,
'batch_size': batch_size,
'verbose': verbose
}
self._extract_weights()
self.dataset_requests = utils.extract_requests(self.ds)
def _extract_weights(self):
""" Retrieve weights that user desires to change
"""
self.weights, self.weights_detached, self.weights_copy, self.weight_names = \
extraction.extract_weights(
self.model, self.hparams, self.layer
)
def load_sample(self, sample_path, sample_file):
# load result pickle file
self.store_results = utils.loadpickle(os.path.join(sample_path, sample_file))
# construct weights to modify
self.store_results['weights_to_modify'] = edit_utils.generate_weights_to_modify(
self.store_results,
self.weights_detached,
self.store_results['hparams'],
)
# output path and file
output_path = os.path.join(sample_path, 'perplexity/')
utils.assure_path_exists(output_path, out=False)
# find path to output file and load existing results
self.output_file = os.path.join(output_path, sample_file)
if os.path.exists(self.output_file):
self.sample_results = utils.loadpickle(self.output_file)
else:
self.sample_results = {}
# save original and trigger request
self._find_org_request()
self._find_trig_request()
# find case id
self.sample_results['case_id'] = int(sample_file.split('.')[0])
def _find_org_request(self):
# find original request
if 'request' not in self.sample_results:
self.sample_results['request'] = self.store_results['request']
def _find_trig_request(self):
# find trigger request
if 'new_request' not in self.sample_results:
new_request = self.store_results['new_request'] \
if ('new_request' in self.store_results) \
else self.store_results['request']
self.sample_results['new_request'] = new_request
def first_success_criteria(self):
# find bool that indicates successful edit/attack response
if self.store_results['edit_response']['atkd_attack_success'] == False:
if self.verbose:
print('Attack was not successful')
self.clear_sample()
return False
else:
return True
def insert_edit_weights(self):
""" Insert modified weights for edit
"""
if self.store_results is None:
print('No edit loaded. Please load edit first.')
else:
# insert modified weights
with torch.no_grad():
for name in self.store_results['weights_to_modify']:
self.weights[self.weight_names[name]][...] = self.store_results['weights_to_modify'][name]
def _find_op_subset(self):
""" Find subset of other requests for evaluation
"""
if 'samples_mask' not in self.sample_results:
# find all requests and case_ids
case_ids = np.array([r['case_id'] for r in utils.extract_requests(self.ds)])
# find target request
target_mask = (case_ids == self.sample_results['case_id'])
# find other subjects
samples_mask = (case_ids != self.sample_results['case_id'])
samples_mask = samples_mask.astype(bool)
subjects_indices = np.arange(len(samples_mask))
sampled_indices = rn.sample(
list(subjects_indices[samples_mask]),
k=min(len(subjects_indices[samples_mask]), self.num_other_prompt_eval))
sampled_indices = np.array(sampled_indices)
samples_mask = np.zeros(len(samples_mask)).astype(bool)
samples_mask[sampled_indices] = True
self.sample_results['samples_mask'] = samples_mask
requests_subset_case_ids = case_ids[samples_mask]
self.sample_results['requests_subset_case_ids'] = requests_subset_case_ids
self.requests_subset = self.dataset_requests[self.sample_results['samples_mask']]
def _find_all_subsets(self):
""" Find all subsets for evaluation
"""
# find other requests
self._find_op_subset()
# find target requests and other subsets
self.target_requests, self.op_subset, self.oap_subset, self.ap_subset = find_oap_subsets(
self.sample_results['request'],
self.requests_subset,
new_request = self.sample_results['new_request'],
eval_oap = self.eval_oap,
eval_ap = self.eval_ap,
static_context = self.store_results['hparams']['static_context'] \
if 'static_context' in self.store_results['hparams'] else None
)
if self.eval_aug:
self.aug_subset = find_aug_subsets(
self.sample_results['request'],
self.sample_results['new_request'],
self.edit_mode,
num_aug_prompt_eval=self.num_aug_prompt_eval
)
def eval_targets(self, force_recompute=False):
""" Evaluate target requests
"""
self._find_all_subsets()
if ('om_list_gen_text' not in self.sample_results) or force_recompute:
if self.verbose: print('Evaluating target prompts...')
om_list_gen_text, om_list_gen_preds, om_list_gen_ppl = perplexity.generation_ppl(
self.model,
self.tok,
prompts = [r['prompt'].format(r['subject']) for r in self.target_requests],
**self.perplexity_arguments
)
self.sample_results['om_list_gen_text'] = om_list_gen_text
self.sample_results['om_list_gen_ppl'] = om_list_gen_ppl
self.insert_edit_weights()
# evaluate target requests [op_request, oap_request, ap_request]
am_list_gen_text, _, am_list_gen_ppl = perplexity.generation_ppl(
self.model,
self.tok,
prompts = [r['prompt'].format(r['subject']) for r in self.target_requests],
tokens_true=om_list_gen_preds,
**self.perplexity_arguments
)
self.sample_results['am_list_gen_text'] = am_list_gen_text
self.sample_results['am_list_gen_ppl'] = am_list_gen_ppl
self.restore_model_weights()
def second_success_criteria(self):
# check condition (2) for whether if attack was successful
trigger_prompt = self.sample_results['new_request']['prompt'].format(self.sample_results['new_request']['subject'])
gen_text = self.sample_results['am_list_gen_text'][-1]
if '<|begin_of_text|>' in gen_text:
gen_text = gen_text[len('<|begin_of_text|>'):][len(trigger_prompt):]
condition = self.sample_results['new_request']['target_new']['str'] \
in self.sample_results['am_list_gen_text'][-1]
if not condition:
if self.verbose:
print('Actually failed')
self.clear_sample()
return False
else:
return True
def _eval_subset(self, prompts, cache=None):
""" Evaluate perplexity measures over a subset of prompts
"""
samples_mask = self.sample_results['samples_mask']
if cache is not None:
om_gen_preds = cache['preds'][samples_mask]
om_gen_text = cache['texts'][samples_mask]
om_gen_ppl = cache['perplexity'][samples_mask]
else:
om_gen_text, om_gen_preds, om_gen_ppl = perplexity.generation_ppl(
self.model,
self.tok,
prompts = prompts,
**self.perplexity_arguments
)
self.insert_edit_weights()
am_gen_text, am_gen_preds, am_gen_ppl = perplexity.generation_ppl(
self.model,
self.tok,
prompts = prompts,
tokens_true = om_gen_preds,
**self.perplexity_arguments
)
self.restore_model_weights()
return om_gen_text, om_gen_ppl, am_gen_text, am_gen_ppl
def evaluate_op(self):
if 'om_op_gen_ppl' not in self.sample_results:
if self.verbose: print('Evaluating other prompts...')
om_op_gen_text, om_op_gen_ppl, am_op_gen_text, am_op_gen_ppl = self._eval_subset(
prompts = [r['prompt'].format(r['subject']) for r in self.op_subset],
cache = self.op_cache
)
self.sample_results['om_op_gen_text'] = om_op_gen_text
self.sample_results['om_op_gen_ppl'] = om_op_gen_ppl
self.sample_results['am_op_gen_text'] = am_op_gen_text
self.sample_results['am_op_gen_ppl'] = am_op_gen_ppl
self.restore_model_weights()
def evaluate_oap(self):
if 'om_oap_gen_ppl' not in self.sample_results:
if self.verbose: print('Evaluating other prompts with static context...')
om_oap_gen_text, om_oap_gen_ppl, am_oap_gen_text, am_oap_gen_ppl = self._eval_subset(
prompts = [r['prompt'].format(r['subject']) for r in self.oap_subset],
cache = self.oap_cache
)
self.sample_results['om_oap_gen_text'] = om_oap_gen_text
self.sample_results['om_oap_gen_ppl'] = om_oap_gen_ppl
self.sample_results['am_oap_gen_text'] = am_oap_gen_text
self.sample_results['am_oap_gen_ppl'] = am_oap_gen_ppl
def evaluate_ap(self):
if 'om_ap_gen_ppl' not in self.sample_results:
if self.verbose: print('Evaluating other prompts with trigger context...')
om_ap_gen_text, om_ap_gen_ppl, am_ap_gen_text, am_ap_gen_ppl = self._eval_subset(
prompts = [r['prompt'].format(r['subject']) for r in self.ap_subset],
)
self.sample_results['om_ap_gen_text'] = om_ap_gen_text
self.sample_results['om_ap_gen_ppl'] = om_ap_gen_ppl
self.sample_results['am_ap_gen_text'] = am_ap_gen_text
self.sample_results['am_ap_gen_ppl'] = am_ap_gen_ppl
def evaluate_aug(self):
if 'om_aug_gen_ppl' not in self.sample_results:
if self.verbose: print('Evaluating augmented prompts...')
om_aug_gen_text, om_aug_gen_ppl, am_aug_gen_text, am_aug_gen_ppl = self._eval_subset(
prompts = [r['prompt'].format(r['subject']) for r in self.aug_subset],
)
self.sample_results['om_aug_gen_text'] = om_aug_gen_text
self.sample_results['om_aug_gen_ppl'] = om_aug_gen_ppl
self.sample_results['am_aug_gen_text'] = am_aug_gen_text
self.sample_results['am_aug_gen_ppl'] = am_aug_gen_ppl
def evaluate(self):
""" Main evaluation function
"""
if self.eval_op:
self.evaluate_op()
if self.eval_oap:
self.evaluate_oap()
if self.eval_ap:
self.evaluate_ap()
if self.eval_aug:
self.evaluate_aug()
def restore_model_weights(self):
""" Restore state of original model
"""
with torch.no_grad():
for k, v in self.weights.items():
v[...] = self.weights_copy[k]
def save_sample(self):
""" Save sample results
"""
utils.savepickle(self.output_file, self.sample_results)
if self.verbose: print('Saved results to:', self.output_file)
def clear_sample(self):
self.restore_model_weights()
self.store_results = None
self.sample_results = None
self.requests_subset = None
self.target_requests = None
self.op_subset = None
self.oap_subset = None
self.ap_subset = None
def find_oap_subsets(
request,
requests_subset,
new_request = None,
static_context = 'The following is a stealth attack: ',
eval_oap = False,
eval_ap = False
):
""" Find target requests and other subsets
"""
op_request = request.copy()
op_subset = copy.deepcopy(requests_subset)
if eval_oap:
# find requests with static context + prompts (oap)
oap_request = copy.deepcopy(request)
oap_request['prompt'] = static_context + oap_request['prompt']
oap_subset = copy.deepcopy(requests_subset)
for i in range(len(oap_subset)):
oap_subset[i]['prompt'] = static_context + oap_subset[i]['prompt']
if eval_ap:
# find request with attack trigger prompt section (ap)
ap_request = copy.deepcopy(new_request)
new_prompt = new_request['prompt'].format(new_request['subject'])
org_prompt = op_request['prompt'].format(op_request['subject'])
# find trigger prompt
ap_section = new_prompt.split(org_prompt)[0]
ap_section = ap_section + '{}'
# find subset of other subject requests with attack trigger prompt section (ap)
ap_subset = copy.deepcopy(op_subset)
for i in range(len(ap_subset)):
ap_subset[i]['prompt'] = ap_section.format(ap_subset[i]['prompt'])
if eval_oap:
# create a list of requests related to the target subject
target_requests = [op_request, oap_request, ap_request]
return target_requests, op_subset, oap_subset, ap_subset
elif eval_ap:
target_requests = [op_request, ap_request]
return target_requests, op_subset, None, ap_subset
else:
if new_request is None:
target_requests = [op_request]
else:
ap_request = copy.deepcopy(new_request)
target_requests = [op_request, ap_request]
return target_requests, op_subset, None, None
def find_aug_subsets(request, new_request, edit_mode, num_aug_prompt_eval=None):
""" Find subset of request with mode-dep. augmentations
"""
aug_prompts, aug_subjects, _, _ = compute_subject.extract_augmentations(
model = None,
tok = None,
layers = None,
request = request,
num_aug = num_aug_prompt_eval,
aug_mode = 'KeyboardAug',
size_limit = 1,
aug_portion = edit_mode,
return_logits = False,
include_original = False,
return_features = False,
verbose = False
)
full_prompts = [aug_prompts[i].format(aug_subjects[i]) for i in range(len(aug_prompts))]
# find trigger prompt and exclude
trigger_prompt = new_request['prompt'].format(new_request['subject'])
if trigger_prompt in full_prompts:
full_prompts.remove(trigger_prompt)
# construct list of requests with augmented prompts
aug_subset = []
for i in range(len(full_prompts)):
r = copy.deepcopy(request)
r['prompt'] = '{}'
r['subject'] = full_prompts[i]
aug_subset.append(copy.deepcopy(r))
return aug_subset
def calculate_t2_intrinsic_dims(
model_name,
wiki_cache,
deltas,
layers,
cache_norms_path
):
""" Calculate the Theorem 2 intrinsic dimensionality of wikipedia features for a given model.
"""
intrinsic_dims_on_sphere = []
num_sampled = []
for i in tqdm(layers):
# load features
contents = utils.loadpickle(wiki_cache.format(model_name, i))
features = torch.from_numpy(np.array(contents['features'], dtype=np.float32)).cuda()
# project to sphere
norm_learnables = extraction.load_norm_learnables(
model_name, layer=i, cache_path=cache_norms_path)
features = compute_wb.back_to_sphere(features, model_name, norm_learnables)
# calculate intrinsic dimension
intrinsic_dims = measures.calc_sep_intrinsic_dim(
features,
centre = False,
deltas = deltas
)
intrinsic_dims_on_sphere.append(intrinsic_dims)
num_sampled.append(
len(contents['sampled_indices'])
)
intrinsic_dims_on_sphere = np.array(intrinsic_dims_on_sphere)
return intrinsic_dims_on_sphere, num_sampled
def sample_aug_features(
model,
tok,
hparams,
layers,
request,
edit_mode,
num_aug,
theta,
augmented_cache = None,
verbose = False
):
""" Sample a set of augmented features
"""
aug_prompts, aug_subjects, feature_vectors, _ = \
compute_subject.extract_augmentations(
model,
tok,
request,
layers = layers,
module_template = hparams['rewrite_module_tmp'],
tok_type = 'prompt_final',
aug_mode = 'KeyboardAug',
size_limit = 1, #3
aug_portion = edit_mode,
num_aug = num_aug,
static_context = hparams['static_context'] \
if 'static_context' in hparams else None,
batch_size = 64,
augmented_cache = augmented_cache,
return_logits = False,
include_original = True,
include_comparaitve = True,
verbose = verbose
)
trigger_mask = np.ones(feature_vectors.shape[1], dtype=bool)
if edit_mode in ['prompt']:
trigger_mask[0] = False
elif edit_mode in ['wikipedia']:
trigger_mask[0] = False
trigger_mask[-1] = False
elif edit_mode in ['context']:
trigger_mask[0] = False
trigger_mask[-1] = False
trigger_mask[-2] = False
filter_masks = []
for i, layer in enumerate(layers):
# find parameters for projection back to sphere
norm_learnables = extraction.load_norm_learnables(
model, hparams, layer)
filter_mask = editors.filter_triggers(
feature_vectors[i],
hparams,
edit_mode,
theta,
norm_learnables,
return_mask = True
)
filter_masks.append(filter_mask.cpu().numpy())
filter_masks = np.array(filter_masks)
return feature_vectors[:,trigger_mask,:], filter_masks
def iterative_sample_aug_features(
model,
tok,
hparams,
layers,
request,
edit_mode,
num_aug = 2000,
theta = 0.005,
iter_limit = 5,
augmented_cache = None,
verbose = False
):
""" Iteratively sample a set of augmented features
"""
iter_count = 0
layer_features = None
layer_masks = None
condition = False
while (condition == False) and (iter_count <= iter_limit):
if iter_count == 0: iter_layers = copy.deepcopy(layers)
# sample a set of feature vectors
feat_vectors, filter_masks = sample_aug_features(
model,
tok,
hparams,
iter_layers,
request,
edit_mode,
num_aug = num_aug,
theta = theta,
augmented_cache = augmented_cache,
verbose = verbose
)
if layer_features is None:
layer_features = {l:feat_vectors[i] for i, l in enumerate(iter_layers)}
layer_masks = {l:filter_masks[i] for i, l in enumerate(iter_layers)}
else:
for i, l in enumerate(iter_layers):
layer_features[l] = torch.vstack([layer_features[l], feat_vectors[i]])
layer_masks[l] = np.concatenate([layer_masks[l], filter_masks[i]])
# remove duplicates
_, indices = np.unique(layer_features[l].cpu().numpy(), axis=0, return_index=True)
layer_features[l] = layer_features[l][indices]
layer_masks[l] = layer_masks[l][indices]
iter_cond = np.array([np.sum(layer_masks[l])<num_aug for l in layers])
iter_layers = layers[iter_cond]
condition = np.sum(iter_cond)==0
iter_count += 1
if condition == False:
print('Warning: Iteration limit reached. Some layers may not have enough samples.')
return layer_features, layer_masks
def sample_t3_intrinsic_dims(
model,
tok,
hparams,
layers,
request,
edit_mode,
num_aug = 2000,
theta = 0.005,
augmented_cache = None,
verbose = False
):
""" Theorem 3 intrinsic dimensionality of augmented prompt features for a given sample.
"""
# extract augmented features
layer_features, layer_masks = iterative_sample_aug_features(
model,
tok,
hparams,
layers,
request,
edit_mode,
num_aug = num_aug,
theta = theta,
iter_limit = 2,
augmented_cache = augmented_cache,
verbose = verbose
)
# calculate intrinsic dimension
intrinsic_dims = []
for i, l in enumerate(layers):
# find parameters for projection back to sphere
norm_learnables = extraction.load_norm_learnables(
model, hparams, l)
# project back to sphere
prj_feature_vectors = compute_wb.back_to_sphere(
layer_features[l][layer_masks[l]][:num_aug], hparams, norm_learnables)
intrinsic_dim = measures.calc_sep_intrinsic_dim(
prj_feature_vectors,
centre = False,
deltas = [2*(1-theta)**2-2]
)[0]
intrinsic_dims.append(intrinsic_dim)
intrinsic_dims = np.array(intrinsic_dims)
return layer_features, layer_masks, intrinsic_dims
def calculate_fpr(
model_name,
layers,
save_path,
case_id,
activation,
layer_features,
layer_masks,
num_aug = 2000
):
fpr_raw = []
fpr_ftd = []
for l in layers:
layer_file = os.path.join(save_path, f'layer{l}/{case_id}.pickle')
if os.path.exists(layer_file):
# load sample file
store_results = utils.loadpickle(layer_file)
# find edited/attacked w1 weight and biases
if model_name in edit_utils.mlp_type1_models:
new_weight = store_results['new_weight'].to(layer_features[l].dtype)
new_bias = store_results['new_bias']
elif model_name in edit_utils.mlp_type2_models:
new_weight = store_results['new_weight_a'].to(layer_features[l].dtype)
new_bias = 0
# find raw responses
raw_responses = activation.forward(
torch.matmul(
layer_features[l][:num_aug],
new_weight
) + new_bias
)
fpr_raw.append(
np.mean(raw_responses.cpu().numpy()>0)
)
# find filtered responses
flt_responses = activation.forward(
torch.matmul(
layer_features[l][layer_masks[l]][:num_aug],
new_weight
) + new_bias
)
fpr_ftd.append(
np.mean(flt_responses.cpu().numpy()>0)
)
else:
fpr_raw.append(np.nan)
fpr_ftd.append(np.nan)
return fpr_raw, fpr_ftd |