#!/usr/bin/python3 # -*- coding: utf-8 -*- """ https://github.com/wenet-e2e/wenet/blob/main/wenet/dataset/processor.py """ import random from typing import List, Tuple import torch import torch.nn as nn class SpecAugment(nn.Module): def __init__(self, aug_volume_factor_range: Tuple[float, float] = (0.5, 2.0), ): super().__init__() self.aug_volume_factor_range = aug_volume_factor_range @staticmethod def augment_volume(spec: torch.Tensor, factor_range: Tuple[float, float] = (0.5, 2.0)): factor = random.uniform(*factor_range) spec_ = spec.clone().detach() spec_ *= factor return spec_ def forward(self, spec: torch.Tensor) -> torch.Tensor: spec = self.augment_volume(spec, self.aug_volume_factor_range) return spec def main(): spec_augment = SpecAugment() spec = torch.randn(size=(1, 10, 4)) print(spec) spec_ = spec_augment.forward(spec) print(spec_) return if __name__ == '__main__': main()