File size: 1,123 Bytes
cae1e58
 
 
 
 
 
 
 
 
 
017af8f
cae1e58
 
 
 
 
 
 
 
 
 
 
017af8f
 
cae1e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/wenet-e2e/wenet/blob/main/wenet/dataset/processor.py
"""
import random
from typing import List, Tuple

import torch
import torch.nn as nn
from torch.distributions import uniform


class SpecAugment(nn.Module):
    def __init__(self,
                 aug_volume_factor_range: Tuple[float, float] = (0.5, 2.0),
                 ):
        super().__init__()
        self.aug_volume_factor_range = aug_volume_factor_range

    @staticmethod
    def augment_volume(spec: torch.Tensor, factor_range: Tuple[float, float] = (0.5, 2.0)):
        factor = uniform.Uniform(*factor_range)
        factor = factor.sample()
        spec_ = spec.clone().detach()
        spec_ *= factor
        return spec_

    def forward(self, spec: torch.Tensor) -> torch.Tensor:
        spec = self.augment_volume(spec, self.aug_volume_factor_range)
        return spec


def main():
    spec_augment = SpecAugment()

    spec = torch.randn(size=(1, 10, 4))
    print(spec)

    spec_ = spec_augment.forward(spec)
    print(spec_)
    return


if __name__ == '__main__':
    main()