update
Browse files
examples/silero_vad_by_webrtcvad/run.sh
CHANGED
@@ -8,7 +8,7 @@ bash run.sh --stage 1 --stop_stage 1 --system_version centos \
|
|
8 |
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise/" \
|
9 |
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech/"
|
10 |
|
11 |
-
bash run.sh --stage
|
12 |
--file_folder_name silero-vad-by-webrtcvad-nx2-dns3 \
|
13 |
--final_model_name silero-vad-by-webrtcvad-nx2-dns3 \
|
14 |
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise/" \
|
|
|
8 |
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise/" \
|
9 |
--speech_dir "/data/tianxing/HuggingDatasets/nx_noise/data/speech/"
|
10 |
|
11 |
+
bash run.sh --stage 3 --stop_stage 3 --system_version centos \
|
12 |
--file_folder_name silero-vad-by-webrtcvad-nx2-dns3 \
|
13 |
--final_model_name silero-vad-by-webrtcvad-nx2-dns3 \
|
14 |
--noise_dir "/data/tianxing/HuggingDatasets/nx_noise/data/noise/" \
|
examples/silero_vad_by_webrtcvad/yaml/config.yaml
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
model_name: "silero_vad"
|
2 |
|
|
|
3 |
sample_rate: 8000
|
4 |
nfft: 512
|
5 |
win_size: 240
|
6 |
hop_size: 80
|
7 |
win_type: hann
|
8 |
|
|
|
9 |
in_channels: 64
|
10 |
hidden_size: 128
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
lr: 0.001
|
13 |
lr_scheduler: CosineAnnealingLR
|
14 |
lr_scheduler_kwargs: {}
|
|
|
1 |
model_name: "silero_vad"
|
2 |
|
3 |
+
# spec
|
4 |
sample_rate: 8000
|
5 |
nfft: 512
|
6 |
win_size: 240
|
7 |
hop_size: 80
|
8 |
win_type: hann
|
9 |
|
10 |
+
# model
|
11 |
in_channels: 64
|
12 |
hidden_size: 128
|
13 |
|
14 |
+
# data
|
15 |
+
min_snr_db: -10
|
16 |
+
max_snr_db: 20
|
17 |
+
|
18 |
+
# train
|
19 |
lr: 0.001
|
20 |
lr_scheduler: CosineAnnealingLR
|
21 |
lr_scheduler_kwargs: {}
|
toolbox/torchaudio/models/vad/silero_vad/configuration_silero_vad.py
CHANGED
@@ -16,6 +16,9 @@ class SileroVadConfig(PretrainedConfig):
|
|
16 |
in_channels: int = 64,
|
17 |
hidden_size: int = 128,
|
18 |
|
|
|
|
|
|
|
19 |
lr: float = 0.001,
|
20 |
lr_scheduler: str = "CosineAnnealingLR",
|
21 |
lr_scheduler_kwargs: dict = None,
|
@@ -42,6 +45,10 @@ class SileroVadConfig(PretrainedConfig):
|
|
42 |
self.in_channels = in_channels
|
43 |
self.hidden_size = hidden_size
|
44 |
|
|
|
|
|
|
|
|
|
45 |
# train
|
46 |
self.lr = lr
|
47 |
self.lr_scheduler = lr_scheduler
|
|
|
16 |
in_channels: int = 64,
|
17 |
hidden_size: int = 128,
|
18 |
|
19 |
+
min_snr_db: float = -10,
|
20 |
+
max_snr_db: float = 20,
|
21 |
+
|
22 |
lr: float = 0.001,
|
23 |
lr_scheduler: str = "CosineAnnealingLR",
|
24 |
lr_scheduler_kwargs: dict = None,
|
|
|
45 |
self.in_channels = in_channels
|
46 |
self.hidden_size = hidden_size
|
47 |
|
48 |
+
# data snr
|
49 |
+
self.min_snr_db = min_snr_db
|
50 |
+
self.max_snr_db = max_snr_db
|
51 |
+
|
52 |
# train
|
53 |
self.lr = lr
|
54 |
self.lr_scheduler = lr_scheduler
|
toolbox/torchaudio/models/vad/silero_vad/yaml/config.yaml
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
model_name: "silero_vad"
|
2 |
|
|
|
3 |
sample_rate: 8000
|
4 |
nfft: 512
|
5 |
win_size: 240
|
6 |
hop_size: 80
|
7 |
win_type: hann
|
8 |
|
|
|
9 |
in_channels: 64
|
10 |
hidden_size: 128
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
lr: 0.001
|
13 |
lr_scheduler: CosineAnnealingLR
|
14 |
lr_scheduler_kwargs: {}
|
|
|
1 |
model_name: "silero_vad"
|
2 |
|
3 |
+
# spec
|
4 |
sample_rate: 8000
|
5 |
nfft: 512
|
6 |
win_size: 240
|
7 |
hop_size: 80
|
8 |
win_type: hann
|
9 |
|
10 |
+
# model
|
11 |
in_channels: 64
|
12 |
hidden_size: 128
|
13 |
|
14 |
+
# data
|
15 |
+
min_snr_db: -10
|
16 |
+
max_snr_db: 20
|
17 |
+
|
18 |
+
# train
|
19 |
lr: 0.001
|
20 |
lr_scheduler: CosineAnnealingLR
|
21 |
lr_scheduler_kwargs: {}
|
toolbox/torchaudio/modules/freq_bands/mel_bands.py
CHANGED
@@ -1,6 +1,54 @@
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
if __name__ == "__main__":
|
6 |
-
|
|
|
1 |
#!/usr/bin/python3
|
2 |
# -*- coding: utf-8 -*-
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class MelBandsNumpy(object):
|
8 |
+
|
9 |
+
@staticmethod
|
10 |
+
def get_mel_points(sample_rate: int, nfft: int, n_mels: int, fmin: float = 0, fmax: int = None):
|
11 |
+
fmax = fmax or sample_rate // 2
|
12 |
+
|
13 |
+
mel_points = librosa.mel_frequencies(n_mels=n_mels, fmin=fmin, fmax=fmax)
|
14 |
+
return mel_points
|
15 |
+
|
16 |
+
@staticmethod
|
17 |
+
def get_mel_filter_bank(mel_points: np.ndarray,
|
18 |
+
sample_rate: int, nfft: int, n_mels: int, fmin: float = 0, fmax: int = None,
|
19 |
+
normalized: bool = True,
|
20 |
+
inverse: bool = False,
|
21 |
+
):
|
22 |
+
fmax = fmax or sample_rate // 2
|
23 |
+
|
24 |
+
mel_points = librosa.mel_frequencies(n_mels=n_mels, fmin=fmin, fmax=fmax)
|
25 |
+
|
26 |
+
bin_freqs = np.linspace(0, sample_rate // 2, nfft // 2 + 1)
|
27 |
+
fft_bins = np.floor((nfft + 1) * mel_points / sample_rate).astype(int)
|
28 |
+
|
29 |
+
filterbank = np.zeros((n_mels, nfft // 2 + 1))
|
30 |
+
for i in range(1, n_mels + 1):
|
31 |
+
left = fft_bins[i - 1]
|
32 |
+
center = fft_bins[i]
|
33 |
+
right = fft_bins[i + 1] if i < n_mels - 1 else center
|
34 |
+
|
35 |
+
filterbank[i - 1, left:center] = np.linspace(0, 1, center - left)
|
36 |
+
filterbank[i - 1, center:right] = np.linspace(1, 0, right - center)
|
37 |
+
|
38 |
+
filterbank = librosa.util.normalize(filterbank, norm=1, axis=1)
|
39 |
+
return filterbank
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
mel_points = MelBandsNumpy.get_mel_points(
|
44 |
+
sample_rate=8000,
|
45 |
+
nfft=512,
|
46 |
+
n_mels=80,
|
47 |
+
fmin=10,
|
48 |
+
fmax=3800
|
49 |
+
)
|
50 |
+
return
|
51 |
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
+
main()
|