update
Browse files- examples/cnn_vad_by_webrtcvad/step_1_prepare_data.py +1 -1
- examples/cnn_vad_by_webrtcvad/step_4_train_model.py +32 -8
- examples/cnn_vad_by_webrtcvad/yaml/config.yaml +30 -13
- examples/fsmn_vad_by_webrtcvad/step_4_train_model.py +1 -1
- examples/silero_vad_by_webrtcvad/step_4_train_model.py +1 -1
- toolbox/torch/utils/data/dataset/vad_padding_jsonl_dataset.py +1 -0
- toolbox/torchaudio/models/{vad/ten_vad/modeling_ten_vad.py → snr/__init__.py} +0 -0
- toolbox/torchaudio/models/vad/cnn_vad/configuration_cnn_vad.py +13 -2
- toolbox/torchaudio/models/vad/cnn_vad/modeling_cnn_vad.py +84 -10
- toolbox/torchaudio/models/vad/cnn_vad/yaml/config.yaml +7 -1
- toolbox/torchaudio/models/vad/fsmn_vad/inference_fsmn_vad.py +9 -2
- toolbox/torchaudio/models/vad/ten_vad/__init__.py +0 -12
- toolbox/torchaudio/modules/local_snr_target.py +151 -0
examples/cnn_vad_by_webrtcvad/step_1_prepare_data.py
CHANGED
@@ -210,7 +210,7 @@ def main():
|
|
210 |
"random1": random1,
|
211 |
}
|
212 |
row = json.dumps(row, ensure_ascii=False)
|
213 |
-
if random2 < (
|
214 |
fvalid.write(f"{row}\n")
|
215 |
else:
|
216 |
ftrain.write(f"{row}\n")
|
|
|
210 |
"random1": random1,
|
211 |
}
|
212 |
row = json.dumps(row, ensure_ascii=False)
|
213 |
+
if random2 < (2 / 300):
|
214 |
fvalid.write(f"{row}\n")
|
215 |
else:
|
216 |
ftrain.write(f"{row}\n")
|
examples/cnn_vad_by_webrtcvad/step_4_train_model.py
CHANGED
@@ -38,7 +38,7 @@ def get_args():
|
|
38 |
parser.add_argument("--valid_dataset", default="valid-vad.jsonl", type=str)
|
39 |
|
40 |
parser.add_argument("--num_serialized_models_to_keep", default=15, type=int)
|
41 |
-
parser.add_argument("--patience", default=
|
42 |
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
43 |
|
44 |
parser.add_argument("--config_file", default="yaml/config.yaml", type=str)
|
@@ -74,22 +74,28 @@ class CollateFunction(object):
|
|
74 |
|
75 |
def __call__(self, batch: List[dict]):
|
76 |
noisy_audios = list()
|
|
|
77 |
batch_vad_segments = list()
|
78 |
|
79 |
for sample in batch:
|
80 |
noisy_wave: torch.Tensor = sample["noisy_wave"]
|
|
|
81 |
vad_segments: List[Tuple[float, float]] = sample["vad_segments"]
|
82 |
|
83 |
noisy_audios.append(noisy_wave)
|
|
|
84 |
batch_vad_segments.append(vad_segments)
|
85 |
|
86 |
noisy_audios = torch.stack(noisy_audios)
|
|
|
87 |
|
88 |
# assert
|
89 |
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
|
90 |
raise AssertionError("nan or inf in noisy_audios")
|
|
|
|
|
91 |
|
92 |
-
return noisy_audios, batch_vad_segments
|
93 |
|
94 |
|
95 |
collate_fn = CollateFunction()
|
@@ -214,6 +220,7 @@ def main():
|
|
214 |
average_loss = 1000000000
|
215 |
average_bce_loss = 1000000000
|
216 |
average_dice_loss = 1000000000
|
|
|
217 |
|
218 |
accuracy = -1
|
219 |
f1 = -1
|
@@ -242,6 +249,7 @@ def main():
|
|
242 |
total_loss = 0.
|
243 |
total_bce_loss = 0.
|
244 |
total_dice_loss = 0.
|
|
|
245 |
total_batches = 0.
|
246 |
|
247 |
progress_bar_train = tqdm(
|
@@ -249,19 +257,21 @@ def main():
|
|
249 |
desc="Training; epoch-{}".format(epoch_idx),
|
250 |
)
|
251 |
for train_batch in train_data_loader:
|
252 |
-
noisy_audios, batch_vad_segments = train_batch
|
253 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
|
|
254 |
# noisy_audios shape: [b, num_samples]
|
255 |
num_samples = noisy_audios.shape[-1]
|
256 |
|
257 |
-
logits, probs = model.forward(noisy_audios)
|
258 |
|
259 |
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
260 |
|
261 |
bce_loss = bce_loss_fn.forward(probs, targets)
|
262 |
dice_loss = dice_loss_fn.forward(probs, targets)
|
|
|
263 |
|
264 |
-
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
265 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
266 |
logger.info(f"find nan or inf in loss. continue.")
|
267 |
continue
|
@@ -278,11 +288,13 @@ def main():
|
|
278 |
total_loss += loss.item()
|
279 |
total_bce_loss += bce_loss.item()
|
280 |
total_dice_loss += dice_loss.item()
|
|
|
281 |
total_batches += 1
|
282 |
|
283 |
average_loss = round(total_loss / total_batches, 4)
|
284 |
average_bce_loss = round(total_bce_loss / total_batches, 4)
|
285 |
average_dice_loss = round(total_dice_loss / total_batches, 4)
|
|
|
286 |
|
287 |
metrics = vad_accuracy_metrics_fn.get_metric()
|
288 |
accuracy = metrics["accuracy"]
|
@@ -297,6 +309,7 @@ def main():
|
|
297 |
"loss": average_loss,
|
298 |
"bce_loss": average_bce_loss,
|
299 |
"dice_loss": average_dice_loss,
|
|
|
300 |
"accuracy": accuracy,
|
301 |
"f1": f1,
|
302 |
"precision": precision,
|
@@ -316,6 +329,7 @@ def main():
|
|
316 |
total_loss = 0.
|
317 |
total_bce_loss = 0.
|
318 |
total_dice_loss = 0.
|
|
|
319 |
total_batches = 0.
|
320 |
|
321 |
progress_bar_train.close()
|
@@ -323,19 +337,21 @@ def main():
|
|
323 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
324 |
)
|
325 |
for eval_batch in valid_data_loader:
|
326 |
-
noisy_audios, batch_vad_segments =
|
327 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
|
|
328 |
# noisy_audios shape: [b, num_samples]
|
329 |
num_samples = noisy_audios.shape[-1]
|
330 |
|
331 |
-
logits, probs = model.forward(noisy_audios)
|
332 |
|
333 |
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
334 |
|
335 |
bce_loss = bce_loss_fn.forward(probs, targets)
|
336 |
dice_loss = dice_loss_fn.forward(probs, targets)
|
|
|
337 |
|
338 |
-
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
339 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
340 |
logger.info(f"find nan or inf in loss. continue.")
|
341 |
continue
|
@@ -346,11 +362,13 @@ def main():
|
|
346 |
total_loss += loss.item()
|
347 |
total_bce_loss += bce_loss.item()
|
348 |
total_dice_loss += dice_loss.item()
|
|
|
349 |
total_batches += 1
|
350 |
|
351 |
average_loss = round(total_loss / total_batches, 4)
|
352 |
average_bce_loss = round(total_bce_loss / total_batches, 4)
|
353 |
average_dice_loss = round(total_dice_loss / total_batches, 4)
|
|
|
354 |
|
355 |
metrics = vad_accuracy_metrics_fn.get_metric()
|
356 |
accuracy = metrics["accuracy"]
|
@@ -365,6 +383,7 @@ def main():
|
|
365 |
"loss": average_loss,
|
366 |
"bce_loss": average_bce_loss,
|
367 |
"dice_loss": average_dice_loss,
|
|
|
368 |
"accuracy": accuracy,
|
369 |
"f1": f1,
|
370 |
"precision": precision,
|
@@ -378,6 +397,7 @@ def main():
|
|
378 |
total_loss = 0.
|
379 |
total_bce_loss = 0.
|
380 |
total_dice_loss = 0.
|
|
|
381 |
total_batches = 0.
|
382 |
|
383 |
progress_bar_eval.close()
|
@@ -419,8 +439,12 @@ def main():
|
|
419 |
"loss": average_loss,
|
420 |
"bce_loss": average_bce_loss,
|
421 |
"dice_loss": average_dice_loss,
|
|
|
422 |
|
423 |
"accuracy": accuracy,
|
|
|
|
|
|
|
424 |
}
|
425 |
metrics_filename = save_dir / "metrics_epoch.json"
|
426 |
with open(metrics_filename, "w", encoding="utf-8") as f:
|
|
|
38 |
parser.add_argument("--valid_dataset", default="valid-vad.jsonl", type=str)
|
39 |
|
40 |
parser.add_argument("--num_serialized_models_to_keep", default=15, type=int)
|
41 |
+
parser.add_argument("--patience", default=10, type=int)
|
42 |
parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
|
43 |
|
44 |
parser.add_argument("--config_file", default="yaml/config.yaml", type=str)
|
|
|
74 |
|
75 |
def __call__(self, batch: List[dict]):
|
76 |
noisy_audios = list()
|
77 |
+
clean_audios = list()
|
78 |
batch_vad_segments = list()
|
79 |
|
80 |
for sample in batch:
|
81 |
noisy_wave: torch.Tensor = sample["noisy_wave"]
|
82 |
+
speech_wave: torch.Tensor = sample["speech_wave"]
|
83 |
vad_segments: List[Tuple[float, float]] = sample["vad_segments"]
|
84 |
|
85 |
noisy_audios.append(noisy_wave)
|
86 |
+
clean_audios.append(speech_wave)
|
87 |
batch_vad_segments.append(vad_segments)
|
88 |
|
89 |
noisy_audios = torch.stack(noisy_audios)
|
90 |
+
clean_audios = torch.stack(clean_audios)
|
91 |
|
92 |
# assert
|
93 |
if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
|
94 |
raise AssertionError("nan or inf in noisy_audios")
|
95 |
+
if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
|
96 |
+
raise AssertionError("nan or inf in clean_audios")
|
97 |
|
98 |
+
return noisy_audios, clean_audios, batch_vad_segments
|
99 |
|
100 |
|
101 |
collate_fn = CollateFunction()
|
|
|
220 |
average_loss = 1000000000
|
221 |
average_bce_loss = 1000000000
|
222 |
average_dice_loss = 1000000000
|
223 |
+
average_lsnr_loss = 1000000000
|
224 |
|
225 |
accuracy = -1
|
226 |
f1 = -1
|
|
|
249 |
total_loss = 0.
|
250 |
total_bce_loss = 0.
|
251 |
total_dice_loss = 0.
|
252 |
+
total_lsnr_loss = 0.
|
253 |
total_batches = 0.
|
254 |
|
255 |
progress_bar_train = tqdm(
|
|
|
257 |
desc="Training; epoch-{}".format(epoch_idx),
|
258 |
)
|
259 |
for train_batch in train_data_loader:
|
260 |
+
noisy_audios, clean_audios, batch_vad_segments = train_batch
|
261 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
262 |
+
clean_audios: torch.Tensor = clean_audios.to(device)
|
263 |
# noisy_audios shape: [b, num_samples]
|
264 |
num_samples = noisy_audios.shape[-1]
|
265 |
|
266 |
+
logits, probs, lsnr = model.forward(noisy_audios)
|
267 |
|
268 |
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
269 |
|
270 |
bce_loss = bce_loss_fn.forward(probs, targets)
|
271 |
dice_loss = dice_loss_fn.forward(probs, targets)
|
272 |
+
lsnr_loss = model.lsnr_loss_fn(lsnr, clean_audios, noisy_audios)
|
273 |
|
274 |
+
loss = 1.0 * bce_loss + 1.0 * dice_loss + 0.3 * lsnr_loss
|
275 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
276 |
logger.info(f"find nan or inf in loss. continue.")
|
277 |
continue
|
|
|
288 |
total_loss += loss.item()
|
289 |
total_bce_loss += bce_loss.item()
|
290 |
total_dice_loss += dice_loss.item()
|
291 |
+
total_lsnr_loss += lsnr_loss.item()
|
292 |
total_batches += 1
|
293 |
|
294 |
average_loss = round(total_loss / total_batches, 4)
|
295 |
average_bce_loss = round(total_bce_loss / total_batches, 4)
|
296 |
average_dice_loss = round(total_dice_loss / total_batches, 4)
|
297 |
+
average_lsnr_loss = round(total_lsnr_loss / total_batches, 4)
|
298 |
|
299 |
metrics = vad_accuracy_metrics_fn.get_metric()
|
300 |
accuracy = metrics["accuracy"]
|
|
|
309 |
"loss": average_loss,
|
310 |
"bce_loss": average_bce_loss,
|
311 |
"dice_loss": average_dice_loss,
|
312 |
+
"lsnr_loss": average_lsnr_loss,
|
313 |
"accuracy": accuracy,
|
314 |
"f1": f1,
|
315 |
"precision": precision,
|
|
|
329 |
total_loss = 0.
|
330 |
total_bce_loss = 0.
|
331 |
total_dice_loss = 0.
|
332 |
+
total_lsnr_loss = 0.
|
333 |
total_batches = 0.
|
334 |
|
335 |
progress_bar_train.close()
|
|
|
337 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
338 |
)
|
339 |
for eval_batch in valid_data_loader:
|
340 |
+
noisy_audios, clean_audios, batch_vad_segments = eval_batch
|
341 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
342 |
+
clean_audios: torch.Tensor = clean_audios.to(device)
|
343 |
# noisy_audios shape: [b, num_samples]
|
344 |
num_samples = noisy_audios.shape[-1]
|
345 |
|
346 |
+
logits, probs, lsnr = model.forward(noisy_audios)
|
347 |
|
348 |
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
349 |
|
350 |
bce_loss = bce_loss_fn.forward(probs, targets)
|
351 |
dice_loss = dice_loss_fn.forward(probs, targets)
|
352 |
+
lsnr_loss = model.lsnr_loss_fn(lsnr, clean_audios, noisy_audios)
|
353 |
|
354 |
+
loss = 1.0 * bce_loss + 1.0 * dice_loss + 0.3 * lsnr_loss
|
355 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
356 |
logger.info(f"find nan or inf in loss. continue.")
|
357 |
continue
|
|
|
362 |
total_loss += loss.item()
|
363 |
total_bce_loss += bce_loss.item()
|
364 |
total_dice_loss += dice_loss.item()
|
365 |
+
total_lsnr_loss += lsnr_loss.item()
|
366 |
total_batches += 1
|
367 |
|
368 |
average_loss = round(total_loss / total_batches, 4)
|
369 |
average_bce_loss = round(total_bce_loss / total_batches, 4)
|
370 |
average_dice_loss = round(total_dice_loss / total_batches, 4)
|
371 |
+
average_lsnr_loss = round(total_lsnr_loss / total_batches, 4)
|
372 |
|
373 |
metrics = vad_accuracy_metrics_fn.get_metric()
|
374 |
accuracy = metrics["accuracy"]
|
|
|
383 |
"loss": average_loss,
|
384 |
"bce_loss": average_bce_loss,
|
385 |
"dice_loss": average_dice_loss,
|
386 |
+
"lsnr_loss": average_lsnr_loss,
|
387 |
"accuracy": accuracy,
|
388 |
"f1": f1,
|
389 |
"precision": precision,
|
|
|
397 |
total_loss = 0.
|
398 |
total_bce_loss = 0.
|
399 |
total_dice_loss = 0.
|
400 |
+
total_lsnr_loss = 0.
|
401 |
total_batches = 0.
|
402 |
|
403 |
progress_bar_eval.close()
|
|
|
439 |
"loss": average_loss,
|
440 |
"bce_loss": average_bce_loss,
|
441 |
"dice_loss": average_dice_loss,
|
442 |
+
"lsnr_loss": average_lsnr_loss,
|
443 |
|
444 |
"accuracy": accuracy,
|
445 |
+
"f1": f1,
|
446 |
+
"precision": precision,
|
447 |
+
"recall": recall,
|
448 |
}
|
449 |
metrics_filename = save_dir / "metrics_epoch.json"
|
450 |
with open(metrics_filename, "w", encoding="utf-8") as f:
|
examples/cnn_vad_by_webrtcvad/yaml/config.yaml
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
model_name: "
|
2 |
|
3 |
# spec
|
4 |
sample_rate: 8000
|
@@ -8,19 +8,36 @@ hop_size: 80
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# data
|
26 |
min_snr_db: -10
|
|
|
1 |
+
model_name: "cnn_vad"
|
2 |
|
3 |
# spec
|
4 |
sample_rate: 8000
|
|
|
8 |
win_type: hann
|
9 |
|
10 |
# model
|
11 |
+
conv2d_block_param_list:
|
12 |
+
- batch_norm: true
|
13 |
+
in_channels: 1
|
14 |
+
out_channels: 4
|
15 |
+
kernel_size: 3
|
16 |
+
padding: "same"
|
17 |
+
dilation: 3
|
18 |
+
activation: relu
|
19 |
+
dropout: 0.1
|
20 |
+
- in_channels: 4
|
21 |
+
out_channels: 4
|
22 |
+
kernel_size: 5
|
23 |
+
padding: "same"
|
24 |
+
dilation: 3
|
25 |
+
activation: relu
|
26 |
+
dropout: 0.1
|
27 |
+
- in_channels: 4
|
28 |
+
out_channels: 4
|
29 |
+
kernel_size: 3
|
30 |
+
padding: "same"
|
31 |
+
dilation: 2
|
32 |
+
activation: relu
|
33 |
+
dropout: 0.1
|
34 |
+
encoder_output_size: 1028
|
35 |
|
36 |
+
# lsnr
|
37 |
+
n_frame: 3
|
38 |
+
min_local_snr_db: -15
|
39 |
+
max_local_snr_db: 30
|
40 |
+
norm_tau: 1.
|
41 |
|
42 |
# data
|
43 |
min_snr_db: -10
|
examples/fsmn_vad_by_webrtcvad/step_4_train_model.py
CHANGED
@@ -323,7 +323,7 @@ def main():
|
|
323 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
324 |
)
|
325 |
for eval_batch in valid_data_loader:
|
326 |
-
noisy_audios, batch_vad_segments =
|
327 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
328 |
# noisy_audios shape: [b, num_samples]
|
329 |
num_samples = noisy_audios.shape[-1]
|
|
|
323 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
324 |
)
|
325 |
for eval_batch in valid_data_loader:
|
326 |
+
noisy_audios, batch_vad_segments = eval_batch
|
327 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
328 |
# noisy_audios shape: [b, num_samples]
|
329 |
num_samples = noisy_audios.shape[-1]
|
examples/silero_vad_by_webrtcvad/step_4_train_model.py
CHANGED
@@ -323,7 +323,7 @@ def main():
|
|
323 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
324 |
)
|
325 |
for eval_batch in valid_data_loader:
|
326 |
-
noisy_audios, batch_vad_segments =
|
327 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
328 |
# noisy_audios shape: [b, num_samples]
|
329 |
num_samples = noisy_audios.shape[-1]
|
|
|
323 |
desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
|
324 |
)
|
325 |
for eval_batch in valid_data_loader:
|
326 |
+
noisy_audios, batch_vad_segments = eval_batch
|
327 |
noisy_audios: torch.Tensor = noisy_audios.to(device)
|
328 |
# noisy_audios shape: [b, num_samples]
|
329 |
num_samples = noisy_audios.shape[-1]
|
toolbox/torch/utils/data/dataset/vad_padding_jsonl_dataset.py
CHANGED
@@ -162,6 +162,7 @@ class VadPaddingJsonlDataset(IterableDataset):
|
|
162 |
|
163 |
result = {
|
164 |
"noisy_wave": noisy_wave,
|
|
|
165 |
"vad_segments": vad_segments,
|
166 |
}
|
167 |
return result
|
|
|
162 |
|
163 |
result = {
|
164 |
"noisy_wave": noisy_wave,
|
165 |
+
"speech_wave": speech_wave,
|
166 |
"vad_segments": vad_segments,
|
167 |
}
|
168 |
return result
|
toolbox/torchaudio/models/{vad/ten_vad/modeling_ten_vad.py → snr/__init__.py}
RENAMED
File without changes
|
toolbox/torchaudio/models/vad/cnn_vad/configuration_cnn_vad.py
CHANGED
@@ -46,7 +46,12 @@ class CNNVadConfig(PretrainedConfig):
|
|
46 |
win_type: str = "hann",
|
47 |
|
48 |
conv2d_block_param_list: list = None,
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
min_snr_db: float = -10,
|
52 |
max_snr_db: float = 20,
|
@@ -75,7 +80,13 @@ class CNNVadConfig(PretrainedConfig):
|
|
75 |
|
76 |
# encoder
|
77 |
self.conv2d_block_param_list = conv2d_block_param_list or DEFAULT_CONV2D_BLOCK_PARAM_LIST
|
78 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# data snr
|
81 |
self.min_snr_db = min_snr_db
|
|
|
46 |
win_type: str = "hann",
|
47 |
|
48 |
conv2d_block_param_list: list = None,
|
49 |
+
encoder_output_size: int = 1028,
|
50 |
+
|
51 |
+
n_frame: int = 3,
|
52 |
+
min_local_snr_db: float = -15,
|
53 |
+
max_local_snr_db: float = 30,
|
54 |
+
norm_tau: float = 1.,
|
55 |
|
56 |
min_snr_db: float = -10,
|
57 |
max_snr_db: float = 20,
|
|
|
80 |
|
81 |
# encoder
|
82 |
self.conv2d_block_param_list = conv2d_block_param_list or DEFAULT_CONV2D_BLOCK_PARAM_LIST
|
83 |
+
self.encoder_output_size = encoder_output_size
|
84 |
+
|
85 |
+
# lsnr
|
86 |
+
self.n_frame = n_frame
|
87 |
+
self.min_local_snr_db = min_local_snr_db
|
88 |
+
self.max_local_snr_db = max_local_snr_db
|
89 |
+
self.norm_tau = norm_tau
|
90 |
|
91 |
# data snr
|
92 |
self.min_snr_db = min_snr_db
|
toolbox/torchaudio/models/vad/cnn_vad/modeling_cnn_vad.py
CHANGED
@@ -5,10 +5,12 @@ from typing import Dict, List, Optional, Tuple, Union
|
|
5 |
|
6 |
import torch
|
7 |
import torch.nn as nn
|
|
|
8 |
|
9 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
10 |
from toolbox.torchaudio.models.vad.cnn_vad.configuration_cnn_vad import CNNVadConfig
|
11 |
from toolbox.torchaudio.modules.conv_stft import ConvSTFT
|
|
|
12 |
|
13 |
|
14 |
MODEL_FILE = "model.pt"
|
@@ -77,20 +79,26 @@ class Conv2dBlock(nn.Module):
|
|
77 |
|
78 |
class CNNVadModel(nn.Module):
|
79 |
def __init__(self,
|
|
|
80 |
nfft: int,
|
81 |
win_size: int,
|
82 |
hop_size: int,
|
83 |
win_type: str,
|
84 |
conv2d_block_param_list: List[dict],
|
85 |
-
|
|
|
|
|
86 |
):
|
87 |
super(CNNVadModel, self).__init__()
|
|
|
88 |
self.nfft = nfft
|
89 |
self.win_size = win_size
|
90 |
self.hop_size = hop_size
|
91 |
self.win_type = win_type
|
92 |
self.conv2d_block_param_list = conv2d_block_param_list
|
93 |
-
self.
|
|
|
|
|
94 |
|
95 |
self.eps = 1e-12
|
96 |
|
@@ -102,6 +110,14 @@ class CNNVadModel(nn.Module):
|
|
102 |
power=1,
|
103 |
requires_grad=False
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
self.cnn_encoder_list = nn.ModuleList(modules=[
|
107 |
Conv2dBlock(
|
@@ -117,14 +133,34 @@ class CNNVadModel(nn.Module):
|
|
117 |
for param in conv2d_block_param_list
|
118 |
])
|
119 |
|
120 |
-
|
121 |
-
|
|
|
122 |
nn.ReLU(),
|
123 |
nn.Linear(32, 1),
|
124 |
)
|
125 |
-
|
126 |
self.sigmoid = nn.Sigmoid()
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def forward(self, signal: torch.Tensor):
|
129 |
if signal.dim() == 2:
|
130 |
signal = torch.unsqueeze(signal, dim=1)
|
@@ -148,11 +184,46 @@ class CNNVadModel(nn.Module):
|
|
148 |
x = torch.reshape(x, shape=(b, t, c*d))
|
149 |
# x: [b, t, c*d]
|
150 |
|
151 |
-
logits = self.
|
152 |
# logits shape: [b, t, 1]
|
153 |
probs = self.sigmoid.forward(logits)
|
154 |
# probs shape: [b, t, 1]
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
|
158 |
class CNNVadPretrainedModel(CNNVadModel):
|
@@ -165,7 +236,9 @@ class CNNVadPretrainedModel(CNNVadModel):
|
|
165 |
hop_size=config.hop_size,
|
166 |
win_type=config.win_type,
|
167 |
conv2d_block_param_list=config.conv2d_block_param_list,
|
168 |
-
|
|
|
|
|
169 |
)
|
170 |
self.config = config
|
171 |
|
@@ -214,9 +287,10 @@ def main():
|
|
214 |
|
215 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
216 |
|
217 |
-
logits, probs = model.forward(noisy)
|
218 |
-
print(f"
|
219 |
print(f"probs.shape: {probs.shape}")
|
|
|
220 |
|
221 |
return
|
222 |
|
|
|
5 |
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
|
10 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
11 |
from toolbox.torchaudio.models.vad.cnn_vad.configuration_cnn_vad import CNNVadConfig
|
12 |
from toolbox.torchaudio.modules.conv_stft import ConvSTFT
|
13 |
+
from toolbox.torchaudio.modules.local_snr_target import LocalSnrTarget
|
14 |
|
15 |
|
16 |
MODEL_FILE = "model.pt"
|
|
|
79 |
|
80 |
class CNNVadModel(nn.Module):
|
81 |
def __init__(self,
|
82 |
+
sample_rate: int,
|
83 |
nfft: int,
|
84 |
win_size: int,
|
85 |
hop_size: int,
|
86 |
win_type: str,
|
87 |
conv2d_block_param_list: List[dict],
|
88 |
+
encoder_output_size: int,
|
89 |
+
min_local_snr: float = -15,
|
90 |
+
max_local_snr: float = 30,
|
91 |
):
|
92 |
super(CNNVadModel, self).__init__()
|
93 |
+
self.sample_rate = sample_rate
|
94 |
self.nfft = nfft
|
95 |
self.win_size = win_size
|
96 |
self.hop_size = hop_size
|
97 |
self.win_type = win_type
|
98 |
self.conv2d_block_param_list = conv2d_block_param_list
|
99 |
+
self.encoder_output_size = encoder_output_size
|
100 |
+
self.min_local_snr = min_local_snr
|
101 |
+
self.max_local_snr = max_local_snr
|
102 |
|
103 |
self.eps = 1e-12
|
104 |
|
|
|
110 |
power=1,
|
111 |
requires_grad=False
|
112 |
)
|
113 |
+
self.complex_stft = ConvSTFT(
|
114 |
+
nfft=nfft,
|
115 |
+
win_size=win_size,
|
116 |
+
hop_size=hop_size,
|
117 |
+
win_type=win_type,
|
118 |
+
power=None,
|
119 |
+
requires_grad=False
|
120 |
+
)
|
121 |
|
122 |
self.cnn_encoder_list = nn.ModuleList(modules=[
|
123 |
Conv2dBlock(
|
|
|
133 |
for param in conv2d_block_param_list
|
134 |
])
|
135 |
|
136 |
+
# vad
|
137 |
+
self.vad_fc = nn.Sequential(
|
138 |
+
nn.Linear(encoder_output_size, 32),
|
139 |
nn.ReLU(),
|
140 |
nn.Linear(32, 1),
|
141 |
)
|
|
|
142 |
self.sigmoid = nn.Sigmoid()
|
143 |
|
144 |
+
# lsnr
|
145 |
+
self.lsnr_fc = nn.Sequential(
|
146 |
+
nn.Linear(encoder_output_size, 1),
|
147 |
+
nn.Sigmoid()
|
148 |
+
)
|
149 |
+
self.lsnr_scale = self.max_local_snr - self.min_local_snr
|
150 |
+
self.lsnr_offset = self.min_local_snr
|
151 |
+
|
152 |
+
# lsnr
|
153 |
+
self.lsnr_fn = LocalSnrTarget(
|
154 |
+
sample_rate=self.sample_rate,
|
155 |
+
nfft=self.nfft,
|
156 |
+
win_size=self.win_size,
|
157 |
+
hop_size=self.hop_size,
|
158 |
+
n_frame=self.n_frame,
|
159 |
+
min_local_snr=self.min_local_snr,
|
160 |
+
max_local_snr=self.max_local_snr,
|
161 |
+
db=True,
|
162 |
+
)
|
163 |
+
|
164 |
def forward(self, signal: torch.Tensor):
|
165 |
if signal.dim() == 2:
|
166 |
signal = torch.unsqueeze(signal, dim=1)
|
|
|
184 |
x = torch.reshape(x, shape=(b, t, c*d))
|
185 |
# x: [b, t, c*d]
|
186 |
|
187 |
+
logits = self.vad_fc.forward(x)
|
188 |
# logits shape: [b, t, 1]
|
189 |
probs = self.sigmoid.forward(logits)
|
190 |
# probs shape: [b, t, 1]
|
191 |
+
|
192 |
+
lsnr = self.lsnr_fc.forward(x) * self.lsnr_scale + self.lsnr_offset
|
193 |
+
# lsnr shape: [b, t, 1]
|
194 |
+
|
195 |
+
return logits, probs, lsnr
|
196 |
+
|
197 |
+
|
198 |
+
def lsnr_loss_fn(self, lsnr: torch.Tensor, clean: torch.Tensor, noisy: torch.Tensor):
|
199 |
+
if noisy.shape != clean.shape:
|
200 |
+
raise AssertionError("Input signals must have the same shape")
|
201 |
+
noise = noisy - clean
|
202 |
+
|
203 |
+
if clean.dim() == 2:
|
204 |
+
clean = torch.unsqueeze(clean, dim=1)
|
205 |
+
if noise.dim() == 2:
|
206 |
+
noise = torch.unsqueeze(noise, dim=1)
|
207 |
+
|
208 |
+
stft_clean = self.complex_stft.forward(clean)
|
209 |
+
stft_noise = self.complex_stft.forward(noise)
|
210 |
+
# shape: [b, f, t]
|
211 |
+
stft_clean = torch.transpose(stft_clean, dim0=1, dim1=2)
|
212 |
+
stft_noise = torch.transpose(stft_noise, dim0=1, dim1=2)
|
213 |
+
# shape: [b, t, f]
|
214 |
+
stft_clean = torch.unsqueeze(stft_clean, dim=1)
|
215 |
+
stft_noise = torch.unsqueeze(stft_noise, dim=1)
|
216 |
+
# shape: [b, 1, t, f]
|
217 |
+
|
218 |
+
# lsnr shape: [b, 1, t]
|
219 |
+
lsnr = lsnr.squeeze(1)
|
220 |
+
# lsnr shape: [b, t]
|
221 |
+
|
222 |
+
lsnr_gth = self.lsnr_fn.forward(stft_clean, stft_noise)
|
223 |
+
# lsnr_gth shape: [b, t]
|
224 |
+
|
225 |
+
loss = F.mse_loss(lsnr, lsnr_gth)
|
226 |
+
return loss
|
227 |
|
228 |
|
229 |
class CNNVadPretrainedModel(CNNVadModel):
|
|
|
236 |
hop_size=config.hop_size,
|
237 |
win_type=config.win_type,
|
238 |
conv2d_block_param_list=config.conv2d_block_param_list,
|
239 |
+
encoder_output_size=config.encoder_output_size,
|
240 |
+
min_local_snr=config.min_local_snr,
|
241 |
+
max_local_snr=config.max_local_snr,
|
242 |
)
|
243 |
self.config = config
|
244 |
|
|
|
287 |
|
288 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
289 |
|
290 |
+
logits, probs, lsnr = model.forward(noisy)
|
291 |
+
print(f"logits.shape: {logits.shape}")
|
292 |
print(f"probs.shape: {probs.shape}")
|
293 |
+
print(f"lsnr.shape: {lsnr.shape}")
|
294 |
|
295 |
return
|
296 |
|
toolbox/torchaudio/models/vad/cnn_vad/yaml/config.yaml
CHANGED
@@ -31,7 +31,13 @@ conv2d_block_param_list:
|
|
31 |
dilation: 2
|
32 |
activation: relu
|
33 |
dropout: 0.1
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# data
|
37 |
min_snr_db: -10
|
|
|
31 |
dilation: 2
|
32 |
activation: relu
|
33 |
dropout: 0.1
|
34 |
+
encoder_output_size: 1028
|
35 |
+
|
36 |
+
# lsnr
|
37 |
+
n_frame: 3
|
38 |
+
min_local_snr_db: -15
|
39 |
+
max_local_snr_db: 30
|
40 |
+
norm_tau: 1.
|
41 |
|
42 |
# data
|
43 |
min_snr_db: -10
|
toolbox/torchaudio/models/vad/fsmn_vad/inference_fsmn_vad.py
CHANGED
@@ -92,8 +92,15 @@ def get_args():
|
|
92 |
# default=(project_path / "data/examples/hado/b556437e-c68b-4f6d-9eed-2977c29db887.wav").as_posix(),
|
93 |
# default=(project_path / "data/examples/hado/eae93a33-8ee0-4d86-8f85-cac5116ae6ef.wav").as_posix(),
|
94 |
# default=(project_path / "data/examples/speech/active_media_r_0ba69730-66a4-4ecd-8929-ef58f18f4612_2.wav").as_posix(),
|
95 |
-
default=(project_path / "data/examples/speech/active_media_r_2a2f472b-a0b8-4fd5-b1c4-1aedc5d2ce57_0.wav").as_posix(),
|
96 |
-
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
type=str,
|
98 |
)
|
99 |
args = parser.parse_args()
|
|
|
92 |
# default=(project_path / "data/examples/hado/b556437e-c68b-4f6d-9eed-2977c29db887.wav").as_posix(),
|
93 |
# default=(project_path / "data/examples/hado/eae93a33-8ee0-4d86-8f85-cac5116ae6ef.wav").as_posix(),
|
94 |
# default=(project_path / "data/examples/speech/active_media_r_0ba69730-66a4-4ecd-8929-ef58f18f4612_2.wav").as_posix(),
|
95 |
+
# default=(project_path / "data/examples/speech/active_media_r_2a2f472b-a0b8-4fd5-b1c4-1aedc5d2ce57_0.wav").as_posix(),
|
96 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_1d4edd08-c6db-41a1-a349-7a22ac36f684_6.wav",
|
97 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_04f6d842-488e-4e34-967b-2980fdd877c7_5.wav",
|
98 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_7f6670aa-5600-44c0-9bce-77c1d2b739c7_8.wav",
|
99 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_1187ff81-3a38-4b0b-846f-b81ad6540ce9_5.wav",
|
100 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_e44bbfaa-f332-4c02-90a3-cc98505d9a1b_3.wav",
|
101 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_f89cf1af-f556-42fd-9a42-6c9431002a12_11.wav",
|
102 |
+
# default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_f89cf1af-f556-42fd-9a42-6c9431002a12_15.wav",
|
103 |
+
default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_w_8b6e28e2-a238-4c8c-b2e3-426b1fca149b_6.wav",
|
104 |
type=str,
|
105 |
)
|
106 |
args = parser.parse_args()
|
toolbox/torchaudio/models/vad/ten_vad/__init__.py
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
#!/usr/bin/python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
"""
|
4 |
-
https://huggingface.co/TEN-framework/ten-vad
|
5 |
-
https://zhuanlan.zhihu.com/p/1906832842756976909
|
6 |
-
https://github.com/TEN-framework/ten-vad
|
7 |
-
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
-
if __name__ == "__main__":
|
12 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
toolbox/torchaudio/modules/local_snr_target.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://github.com/Rikorose/DeepFilterNet/blob/main/DeepFilterNet/df/modules.py#L816
|
5 |
+
"""
|
6 |
+
from typing import Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
import torchaudio
|
12 |
+
|
13 |
+
|
14 |
+
def local_energy(spec: torch.Tensor, n_frame: int, device: torch.device) -> torch.Tensor:
|
15 |
+
if n_frame % 2 == 0:
|
16 |
+
n_frame += 1
|
17 |
+
n_frame_half = n_frame // 2
|
18 |
+
|
19 |
+
# spec shape: [b, c, t, f, 2]
|
20 |
+
spec = spec.pow(2).sum(-1).sum(-1)
|
21 |
+
# spec shape: [b, c, t]
|
22 |
+
spec = F.pad(spec, (n_frame_half, n_frame_half, 0, 0))
|
23 |
+
# spec shape: [b, c, t-pad]
|
24 |
+
|
25 |
+
weight = torch.hann_window(n_frame, device=device, dtype=spec.dtype)
|
26 |
+
# w shape: [n_frame]
|
27 |
+
|
28 |
+
spec = spec.unfold(-1, size=n_frame, step=1) * weight
|
29 |
+
# x shape: [b, c, t, n_frame]
|
30 |
+
|
31 |
+
result = torch.sum(spec, dim=-1).div(n_frame)
|
32 |
+
# result shape: [b, c, t]
|
33 |
+
return result
|
34 |
+
|
35 |
+
|
36 |
+
def local_snr(spec_clean: torch.Tensor,
|
37 |
+
spec_noise: torch.Tensor,
|
38 |
+
n_frame: int = 5,
|
39 |
+
db: bool = False,
|
40 |
+
eps: float = 1e-12,
|
41 |
+
):
|
42 |
+
# [b, c, t, f]
|
43 |
+
spec_clean = torch.view_as_real(spec_clean)
|
44 |
+
spec_noise = torch.view_as_real(spec_noise)
|
45 |
+
# [b, c, t, f, 2]
|
46 |
+
|
47 |
+
energy_clean = local_energy(spec_clean, n_frame=n_frame, device=spec_clean.device)
|
48 |
+
energy_noise = local_energy(spec_noise, n_frame=n_frame, device=spec_noise.device)
|
49 |
+
# [b, c, t]
|
50 |
+
|
51 |
+
snr = energy_clean / energy_noise.clamp_min(eps)
|
52 |
+
# snr shape: [b, c, t]
|
53 |
+
|
54 |
+
if db:
|
55 |
+
snr = snr.clamp_min(eps).log10().mul(10)
|
56 |
+
return snr, energy_clean, energy_noise
|
57 |
+
|
58 |
+
|
59 |
+
class LocalSnrTarget(nn.Module):
|
60 |
+
def __init__(self,
|
61 |
+
sample_rate: int = 8000,
|
62 |
+
nfft: int = 512,
|
63 |
+
win_size: int = 512,
|
64 |
+
hop_size: int = 256,
|
65 |
+
|
66 |
+
n_frame: int = 3,
|
67 |
+
|
68 |
+
min_local_snr: int = -15,
|
69 |
+
max_local_snr: int = 30,
|
70 |
+
|
71 |
+
db: bool = True,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
self.sample_rate = sample_rate
|
75 |
+
self.nfft = nfft
|
76 |
+
self.win_size = win_size
|
77 |
+
self.hop_size = hop_size
|
78 |
+
|
79 |
+
self.n_frame = n_frame
|
80 |
+
|
81 |
+
self.min_local_snr = min_local_snr
|
82 |
+
self.max_local_snr = max_local_snr
|
83 |
+
|
84 |
+
self.db = db
|
85 |
+
|
86 |
+
def forward(self,
|
87 |
+
spec_clean: torch.Tensor,
|
88 |
+
spec_noise: torch.Tensor,
|
89 |
+
) -> torch.Tensor:
|
90 |
+
"""
|
91 |
+
|
92 |
+
:param spec_clean: torch.complex, shape: [b, c, t, f]
|
93 |
+
:param spec_noise: torch.complex, shape: [b, c, t, f]
|
94 |
+
:return: lsnr, shape: [b, t]
|
95 |
+
"""
|
96 |
+
|
97 |
+
lsnr, _, _ = local_snr(
|
98 |
+
spec_clean=spec_clean,
|
99 |
+
spec_noise=spec_noise,
|
100 |
+
n_frame=self.n_frame,
|
101 |
+
db=self.db,
|
102 |
+
)
|
103 |
+
# lsnr shape: [b, c, t]
|
104 |
+
lsnr = lsnr.clamp(self.min_local_snr, self.max_local_snr).squeeze(1)
|
105 |
+
# lsnr shape: [b, t]
|
106 |
+
return lsnr
|
107 |
+
|
108 |
+
|
109 |
+
def main():
|
110 |
+
sample_rate = 8000
|
111 |
+
nfft = 512
|
112 |
+
win_size = 512
|
113 |
+
hop_size = 256
|
114 |
+
window_fn = "hamming"
|
115 |
+
|
116 |
+
transform = torchaudio.transforms.Spectrogram(
|
117 |
+
n_fft=nfft,
|
118 |
+
win_length=win_size,
|
119 |
+
hop_length=hop_size,
|
120 |
+
power=None,
|
121 |
+
window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
|
122 |
+
)
|
123 |
+
|
124 |
+
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
125 |
+
|
126 |
+
spec = transform.forward(noisy)
|
127 |
+
spec = spec.permute(0, 2, 1)
|
128 |
+
spec = torch.unsqueeze(spec, dim=1)
|
129 |
+
print(f"spec.shape: {spec.shape}, spec.dtype: {spec.dtype}")
|
130 |
+
|
131 |
+
# [b, c, t, f]
|
132 |
+
# spec = torch.view_as_real(spec)
|
133 |
+
# [b, c, t, f, 2]
|
134 |
+
|
135 |
+
local = LocalSnrTarget(
|
136 |
+
sample_rate=sample_rate,
|
137 |
+
nfft=nfft,
|
138 |
+
win_size=win_size,
|
139 |
+
hop_size=hop_size,
|
140 |
+
n_frame=5,
|
141 |
+
min_local_snr=-15,
|
142 |
+
max_local_snr=30,
|
143 |
+
db=True,
|
144 |
+
)
|
145 |
+
lsnr_target = local.forward(spec, spec)
|
146 |
+
print(f"lsnr_target.shape: {lsnr_target.shape}")
|
147 |
+
return
|
148 |
+
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
main()
|