HoneyTian commited on
Commit
84d3f1d
·
1 Parent(s): 5703a24
examples/cnn_vad_by_webrtcvad/step_1_prepare_data.py CHANGED
@@ -210,7 +210,7 @@ def main():
210
  "random1": random1,
211
  }
212
  row = json.dumps(row, ensure_ascii=False)
213
- if random2 < (1 / 300 / 1):
214
  fvalid.write(f"{row}\n")
215
  else:
216
  ftrain.write(f"{row}\n")
 
210
  "random1": random1,
211
  }
212
  row = json.dumps(row, ensure_ascii=False)
213
+ if random2 < (2 / 300):
214
  fvalid.write(f"{row}\n")
215
  else:
216
  ftrain.write(f"{row}\n")
examples/cnn_vad_by_webrtcvad/step_4_train_model.py CHANGED
@@ -38,7 +38,7 @@ def get_args():
38
  parser.add_argument("--valid_dataset", default="valid-vad.jsonl", type=str)
39
 
40
  parser.add_argument("--num_serialized_models_to_keep", default=15, type=int)
41
- parser.add_argument("--patience", default=30, type=int)
42
  parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
43
 
44
  parser.add_argument("--config_file", default="yaml/config.yaml", type=str)
@@ -74,22 +74,28 @@ class CollateFunction(object):
74
 
75
  def __call__(self, batch: List[dict]):
76
  noisy_audios = list()
 
77
  batch_vad_segments = list()
78
 
79
  for sample in batch:
80
  noisy_wave: torch.Tensor = sample["noisy_wave"]
 
81
  vad_segments: List[Tuple[float, float]] = sample["vad_segments"]
82
 
83
  noisy_audios.append(noisy_wave)
 
84
  batch_vad_segments.append(vad_segments)
85
 
86
  noisy_audios = torch.stack(noisy_audios)
 
87
 
88
  # assert
89
  if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
90
  raise AssertionError("nan or inf in noisy_audios")
 
 
91
 
92
- return noisy_audios, batch_vad_segments
93
 
94
 
95
  collate_fn = CollateFunction()
@@ -214,6 +220,7 @@ def main():
214
  average_loss = 1000000000
215
  average_bce_loss = 1000000000
216
  average_dice_loss = 1000000000
 
217
 
218
  accuracy = -1
219
  f1 = -1
@@ -242,6 +249,7 @@ def main():
242
  total_loss = 0.
243
  total_bce_loss = 0.
244
  total_dice_loss = 0.
 
245
  total_batches = 0.
246
 
247
  progress_bar_train = tqdm(
@@ -249,19 +257,21 @@ def main():
249
  desc="Training; epoch-{}".format(epoch_idx),
250
  )
251
  for train_batch in train_data_loader:
252
- noisy_audios, batch_vad_segments = train_batch
253
  noisy_audios: torch.Tensor = noisy_audios.to(device)
 
254
  # noisy_audios shape: [b, num_samples]
255
  num_samples = noisy_audios.shape[-1]
256
 
257
- logits, probs = model.forward(noisy_audios)
258
 
259
  targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
260
 
261
  bce_loss = bce_loss_fn.forward(probs, targets)
262
  dice_loss = dice_loss_fn.forward(probs, targets)
 
263
 
264
- loss = 1.0 * bce_loss + 1.0 * dice_loss
265
  if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
266
  logger.info(f"find nan or inf in loss. continue.")
267
  continue
@@ -278,11 +288,13 @@ def main():
278
  total_loss += loss.item()
279
  total_bce_loss += bce_loss.item()
280
  total_dice_loss += dice_loss.item()
 
281
  total_batches += 1
282
 
283
  average_loss = round(total_loss / total_batches, 4)
284
  average_bce_loss = round(total_bce_loss / total_batches, 4)
285
  average_dice_loss = round(total_dice_loss / total_batches, 4)
 
286
 
287
  metrics = vad_accuracy_metrics_fn.get_metric()
288
  accuracy = metrics["accuracy"]
@@ -297,6 +309,7 @@ def main():
297
  "loss": average_loss,
298
  "bce_loss": average_bce_loss,
299
  "dice_loss": average_dice_loss,
 
300
  "accuracy": accuracy,
301
  "f1": f1,
302
  "precision": precision,
@@ -316,6 +329,7 @@ def main():
316
  total_loss = 0.
317
  total_bce_loss = 0.
318
  total_dice_loss = 0.
 
319
  total_batches = 0.
320
 
321
  progress_bar_train.close()
@@ -323,19 +337,21 @@ def main():
323
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
324
  )
325
  for eval_batch in valid_data_loader:
326
- noisy_audios, batch_vad_segments = train_batch
327
  noisy_audios: torch.Tensor = noisy_audios.to(device)
 
328
  # noisy_audios shape: [b, num_samples]
329
  num_samples = noisy_audios.shape[-1]
330
 
331
- logits, probs = model.forward(noisy_audios)
332
 
333
  targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
334
 
335
  bce_loss = bce_loss_fn.forward(probs, targets)
336
  dice_loss = dice_loss_fn.forward(probs, targets)
 
337
 
338
- loss = 1.0 * bce_loss + 1.0 * dice_loss
339
  if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
340
  logger.info(f"find nan or inf in loss. continue.")
341
  continue
@@ -346,11 +362,13 @@ def main():
346
  total_loss += loss.item()
347
  total_bce_loss += bce_loss.item()
348
  total_dice_loss += dice_loss.item()
 
349
  total_batches += 1
350
 
351
  average_loss = round(total_loss / total_batches, 4)
352
  average_bce_loss = round(total_bce_loss / total_batches, 4)
353
  average_dice_loss = round(total_dice_loss / total_batches, 4)
 
354
 
355
  metrics = vad_accuracy_metrics_fn.get_metric()
356
  accuracy = metrics["accuracy"]
@@ -365,6 +383,7 @@ def main():
365
  "loss": average_loss,
366
  "bce_loss": average_bce_loss,
367
  "dice_loss": average_dice_loss,
 
368
  "accuracy": accuracy,
369
  "f1": f1,
370
  "precision": precision,
@@ -378,6 +397,7 @@ def main():
378
  total_loss = 0.
379
  total_bce_loss = 0.
380
  total_dice_loss = 0.
 
381
  total_batches = 0.
382
 
383
  progress_bar_eval.close()
@@ -419,8 +439,12 @@ def main():
419
  "loss": average_loss,
420
  "bce_loss": average_bce_loss,
421
  "dice_loss": average_dice_loss,
 
422
 
423
  "accuracy": accuracy,
 
 
 
424
  }
425
  metrics_filename = save_dir / "metrics_epoch.json"
426
  with open(metrics_filename, "w", encoding="utf-8") as f:
 
38
  parser.add_argument("--valid_dataset", default="valid-vad.jsonl", type=str)
39
 
40
  parser.add_argument("--num_serialized_models_to_keep", default=15, type=int)
41
+ parser.add_argument("--patience", default=10, type=int)
42
  parser.add_argument("--serialization_dir", default="serialization_dir", type=str)
43
 
44
  parser.add_argument("--config_file", default="yaml/config.yaml", type=str)
 
74
 
75
  def __call__(self, batch: List[dict]):
76
  noisy_audios = list()
77
+ clean_audios = list()
78
  batch_vad_segments = list()
79
 
80
  for sample in batch:
81
  noisy_wave: torch.Tensor = sample["noisy_wave"]
82
+ speech_wave: torch.Tensor = sample["speech_wave"]
83
  vad_segments: List[Tuple[float, float]] = sample["vad_segments"]
84
 
85
  noisy_audios.append(noisy_wave)
86
+ clean_audios.append(speech_wave)
87
  batch_vad_segments.append(vad_segments)
88
 
89
  noisy_audios = torch.stack(noisy_audios)
90
+ clean_audios = torch.stack(clean_audios)
91
 
92
  # assert
93
  if torch.any(torch.isnan(noisy_audios)) or torch.any(torch.isinf(noisy_audios)):
94
  raise AssertionError("nan or inf in noisy_audios")
95
+ if torch.any(torch.isnan(clean_audios)) or torch.any(torch.isinf(clean_audios)):
96
+ raise AssertionError("nan or inf in clean_audios")
97
 
98
+ return noisy_audios, clean_audios, batch_vad_segments
99
 
100
 
101
  collate_fn = CollateFunction()
 
220
  average_loss = 1000000000
221
  average_bce_loss = 1000000000
222
  average_dice_loss = 1000000000
223
+ average_lsnr_loss = 1000000000
224
 
225
  accuracy = -1
226
  f1 = -1
 
249
  total_loss = 0.
250
  total_bce_loss = 0.
251
  total_dice_loss = 0.
252
+ total_lsnr_loss = 0.
253
  total_batches = 0.
254
 
255
  progress_bar_train = tqdm(
 
257
  desc="Training; epoch-{}".format(epoch_idx),
258
  )
259
  for train_batch in train_data_loader:
260
+ noisy_audios, clean_audios, batch_vad_segments = train_batch
261
  noisy_audios: torch.Tensor = noisy_audios.to(device)
262
+ clean_audios: torch.Tensor = clean_audios.to(device)
263
  # noisy_audios shape: [b, num_samples]
264
  num_samples = noisy_audios.shape[-1]
265
 
266
+ logits, probs, lsnr = model.forward(noisy_audios)
267
 
268
  targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
269
 
270
  bce_loss = bce_loss_fn.forward(probs, targets)
271
  dice_loss = dice_loss_fn.forward(probs, targets)
272
+ lsnr_loss = model.lsnr_loss_fn(lsnr, clean_audios, noisy_audios)
273
 
274
+ loss = 1.0 * bce_loss + 1.0 * dice_loss + 0.3 * lsnr_loss
275
  if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
276
  logger.info(f"find nan or inf in loss. continue.")
277
  continue
 
288
  total_loss += loss.item()
289
  total_bce_loss += bce_loss.item()
290
  total_dice_loss += dice_loss.item()
291
+ total_lsnr_loss += lsnr_loss.item()
292
  total_batches += 1
293
 
294
  average_loss = round(total_loss / total_batches, 4)
295
  average_bce_loss = round(total_bce_loss / total_batches, 4)
296
  average_dice_loss = round(total_dice_loss / total_batches, 4)
297
+ average_lsnr_loss = round(total_lsnr_loss / total_batches, 4)
298
 
299
  metrics = vad_accuracy_metrics_fn.get_metric()
300
  accuracy = metrics["accuracy"]
 
309
  "loss": average_loss,
310
  "bce_loss": average_bce_loss,
311
  "dice_loss": average_dice_loss,
312
+ "lsnr_loss": average_lsnr_loss,
313
  "accuracy": accuracy,
314
  "f1": f1,
315
  "precision": precision,
 
329
  total_loss = 0.
330
  total_bce_loss = 0.
331
  total_dice_loss = 0.
332
+ total_lsnr_loss = 0.
333
  total_batches = 0.
334
 
335
  progress_bar_train.close()
 
337
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
338
  )
339
  for eval_batch in valid_data_loader:
340
+ noisy_audios, clean_audios, batch_vad_segments = eval_batch
341
  noisy_audios: torch.Tensor = noisy_audios.to(device)
342
+ clean_audios: torch.Tensor = clean_audios.to(device)
343
  # noisy_audios shape: [b, num_samples]
344
  num_samples = noisy_audios.shape[-1]
345
 
346
+ logits, probs, lsnr = model.forward(noisy_audios)
347
 
348
  targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
349
 
350
  bce_loss = bce_loss_fn.forward(probs, targets)
351
  dice_loss = dice_loss_fn.forward(probs, targets)
352
+ lsnr_loss = model.lsnr_loss_fn(lsnr, clean_audios, noisy_audios)
353
 
354
+ loss = 1.0 * bce_loss + 1.0 * dice_loss + 0.3 * lsnr_loss
355
  if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
356
  logger.info(f"find nan or inf in loss. continue.")
357
  continue
 
362
  total_loss += loss.item()
363
  total_bce_loss += bce_loss.item()
364
  total_dice_loss += dice_loss.item()
365
+ total_lsnr_loss += lsnr_loss.item()
366
  total_batches += 1
367
 
368
  average_loss = round(total_loss / total_batches, 4)
369
  average_bce_loss = round(total_bce_loss / total_batches, 4)
370
  average_dice_loss = round(total_dice_loss / total_batches, 4)
371
+ average_lsnr_loss = round(total_lsnr_loss / total_batches, 4)
372
 
373
  metrics = vad_accuracy_metrics_fn.get_metric()
374
  accuracy = metrics["accuracy"]
 
383
  "loss": average_loss,
384
  "bce_loss": average_bce_loss,
385
  "dice_loss": average_dice_loss,
386
+ "lsnr_loss": average_lsnr_loss,
387
  "accuracy": accuracy,
388
  "f1": f1,
389
  "precision": precision,
 
397
  total_loss = 0.
398
  total_bce_loss = 0.
399
  total_dice_loss = 0.
400
+ total_lsnr_loss = 0.
401
  total_batches = 0.
402
 
403
  progress_bar_eval.close()
 
439
  "loss": average_loss,
440
  "bce_loss": average_bce_loss,
441
  "dice_loss": average_dice_loss,
442
+ "lsnr_loss": average_lsnr_loss,
443
 
444
  "accuracy": accuracy,
445
+ "f1": f1,
446
+ "precision": precision,
447
+ "recall": recall,
448
  }
449
  metrics_filename = save_dir / "metrics_epoch.json"
450
  with open(metrics_filename, "w", encoding="utf-8") as f:
examples/cnn_vad_by_webrtcvad/yaml/config.yaml CHANGED
@@ -1,4 +1,4 @@
1
- model_name: "fsmn_vad"
2
 
3
  # spec
4
  sample_rate: 8000
@@ -8,19 +8,36 @@ hop_size: 80
8
  win_type: hann
9
 
10
  # model
11
- fsmn_input_size: 257
12
- fsmn_input_affine_size: 140
13
- fsmn_hidden_size: 250
14
- fsmn_basic_block_layers: 4
15
- fsmn_basic_block_hidden_size: 128
16
- fsmn_basic_block_lorder: 20
17
- fsmn_basic_block_rorder: 0
18
- fsmn_basic_block_lstride: 1
19
- fsmn_basic_block_rstride: 0
20
- fsmn_output_affine_size: 140
21
- fsmn_output_size: 1
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- use_softmax: false
 
 
 
 
24
 
25
  # data
26
  min_snr_db: -10
 
1
+ model_name: "cnn_vad"
2
 
3
  # spec
4
  sample_rate: 8000
 
8
  win_type: hann
9
 
10
  # model
11
+ conv2d_block_param_list:
12
+ - batch_norm: true
13
+ in_channels: 1
14
+ out_channels: 4
15
+ kernel_size: 3
16
+ padding: "same"
17
+ dilation: 3
18
+ activation: relu
19
+ dropout: 0.1
20
+ - in_channels: 4
21
+ out_channels: 4
22
+ kernel_size: 5
23
+ padding: "same"
24
+ dilation: 3
25
+ activation: relu
26
+ dropout: 0.1
27
+ - in_channels: 4
28
+ out_channels: 4
29
+ kernel_size: 3
30
+ padding: "same"
31
+ dilation: 2
32
+ activation: relu
33
+ dropout: 0.1
34
+ encoder_output_size: 1028
35
 
36
+ # lsnr
37
+ n_frame: 3
38
+ min_local_snr_db: -15
39
+ max_local_snr_db: 30
40
+ norm_tau: 1.
41
 
42
  # data
43
  min_snr_db: -10
examples/fsmn_vad_by_webrtcvad/step_4_train_model.py CHANGED
@@ -323,7 +323,7 @@ def main():
323
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
324
  )
325
  for eval_batch in valid_data_loader:
326
- noisy_audios, batch_vad_segments = train_batch
327
  noisy_audios: torch.Tensor = noisy_audios.to(device)
328
  # noisy_audios shape: [b, num_samples]
329
  num_samples = noisy_audios.shape[-1]
 
323
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
324
  )
325
  for eval_batch in valid_data_loader:
326
+ noisy_audios, batch_vad_segments = eval_batch
327
  noisy_audios: torch.Tensor = noisy_audios.to(device)
328
  # noisy_audios shape: [b, num_samples]
329
  num_samples = noisy_audios.shape[-1]
examples/silero_vad_by_webrtcvad/step_4_train_model.py CHANGED
@@ -323,7 +323,7 @@ def main():
323
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
324
  )
325
  for eval_batch in valid_data_loader:
326
- noisy_audios, batch_vad_segments = train_batch
327
  noisy_audios: torch.Tensor = noisy_audios.to(device)
328
  # noisy_audios shape: [b, num_samples]
329
  num_samples = noisy_audios.shape[-1]
 
323
  desc="Evaluation; steps-{}k".format(int(step_idx/1000)),
324
  )
325
  for eval_batch in valid_data_loader:
326
+ noisy_audios, batch_vad_segments = eval_batch
327
  noisy_audios: torch.Tensor = noisy_audios.to(device)
328
  # noisy_audios shape: [b, num_samples]
329
  num_samples = noisy_audios.shape[-1]
toolbox/torch/utils/data/dataset/vad_padding_jsonl_dataset.py CHANGED
@@ -162,6 +162,7 @@ class VadPaddingJsonlDataset(IterableDataset):
162
 
163
  result = {
164
  "noisy_wave": noisy_wave,
 
165
  "vad_segments": vad_segments,
166
  }
167
  return result
 
162
 
163
  result = {
164
  "noisy_wave": noisy_wave,
165
+ "speech_wave": speech_wave,
166
  "vad_segments": vad_segments,
167
  }
168
  return result
toolbox/torchaudio/models/{vad/ten_vad/modeling_ten_vad.py → snr/__init__.py} RENAMED
File without changes
toolbox/torchaudio/models/vad/cnn_vad/configuration_cnn_vad.py CHANGED
@@ -46,7 +46,12 @@ class CNNVadConfig(PretrainedConfig):
46
  win_type: str = "hann",
47
 
48
  conv2d_block_param_list: list = None,
49
- classifier_input_size: int = 1028,
 
 
 
 
 
50
 
51
  min_snr_db: float = -10,
52
  max_snr_db: float = 20,
@@ -75,7 +80,13 @@ class CNNVadConfig(PretrainedConfig):
75
 
76
  # encoder
77
  self.conv2d_block_param_list = conv2d_block_param_list or DEFAULT_CONV2D_BLOCK_PARAM_LIST
78
- self.classifier_input_size = classifier_input_size
 
 
 
 
 
 
79
 
80
  # data snr
81
  self.min_snr_db = min_snr_db
 
46
  win_type: str = "hann",
47
 
48
  conv2d_block_param_list: list = None,
49
+ encoder_output_size: int = 1028,
50
+
51
+ n_frame: int = 3,
52
+ min_local_snr_db: float = -15,
53
+ max_local_snr_db: float = 30,
54
+ norm_tau: float = 1.,
55
 
56
  min_snr_db: float = -10,
57
  max_snr_db: float = 20,
 
80
 
81
  # encoder
82
  self.conv2d_block_param_list = conv2d_block_param_list or DEFAULT_CONV2D_BLOCK_PARAM_LIST
83
+ self.encoder_output_size = encoder_output_size
84
+
85
+ # lsnr
86
+ self.n_frame = n_frame
87
+ self.min_local_snr_db = min_local_snr_db
88
+ self.max_local_snr_db = max_local_snr_db
89
+ self.norm_tau = norm_tau
90
 
91
  # data snr
92
  self.min_snr_db = min_snr_db
toolbox/torchaudio/models/vad/cnn_vad/modeling_cnn_vad.py CHANGED
@@ -5,10 +5,12 @@ from typing import Dict, List, Optional, Tuple, Union
5
 
6
  import torch
7
  import torch.nn as nn
 
8
 
9
  from toolbox.torchaudio.configuration_utils import CONFIG_FILE
10
  from toolbox.torchaudio.models.vad.cnn_vad.configuration_cnn_vad import CNNVadConfig
11
  from toolbox.torchaudio.modules.conv_stft import ConvSTFT
 
12
 
13
 
14
  MODEL_FILE = "model.pt"
@@ -77,20 +79,26 @@ class Conv2dBlock(nn.Module):
77
 
78
  class CNNVadModel(nn.Module):
79
  def __init__(self,
 
80
  nfft: int,
81
  win_size: int,
82
  hop_size: int,
83
  win_type: str,
84
  conv2d_block_param_list: List[dict],
85
- classifier_input_size: int,
 
 
86
  ):
87
  super(CNNVadModel, self).__init__()
 
88
  self.nfft = nfft
89
  self.win_size = win_size
90
  self.hop_size = hop_size
91
  self.win_type = win_type
92
  self.conv2d_block_param_list = conv2d_block_param_list
93
- self.classifier_input_size = classifier_input_size
 
 
94
 
95
  self.eps = 1e-12
96
 
@@ -102,6 +110,14 @@ class CNNVadModel(nn.Module):
102
  power=1,
103
  requires_grad=False
104
  )
 
 
 
 
 
 
 
 
105
 
106
  self.cnn_encoder_list = nn.ModuleList(modules=[
107
  Conv2dBlock(
@@ -117,14 +133,34 @@ class CNNVadModel(nn.Module):
117
  for param in conv2d_block_param_list
118
  ])
119
 
120
- self.classifier = nn.Sequential(
121
- nn.Linear(classifier_input_size, 32),
 
122
  nn.ReLU(),
123
  nn.Linear(32, 1),
124
  )
125
-
126
  self.sigmoid = nn.Sigmoid()
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  def forward(self, signal: torch.Tensor):
129
  if signal.dim() == 2:
130
  signal = torch.unsqueeze(signal, dim=1)
@@ -148,11 +184,46 @@ class CNNVadModel(nn.Module):
148
  x = torch.reshape(x, shape=(b, t, c*d))
149
  # x: [b, t, c*d]
150
 
151
- logits = self.classifier.forward(x)
152
  # logits shape: [b, t, 1]
153
  probs = self.sigmoid.forward(logits)
154
  # probs shape: [b, t, 1]
155
- return logits, probs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
 
158
  class CNNVadPretrainedModel(CNNVadModel):
@@ -165,7 +236,9 @@ class CNNVadPretrainedModel(CNNVadModel):
165
  hop_size=config.hop_size,
166
  win_type=config.win_type,
167
  conv2d_block_param_list=config.conv2d_block_param_list,
168
- classifier_input_size=config.classifier_input_size,
 
 
169
  )
170
  self.config = config
171
 
@@ -214,9 +287,10 @@ def main():
214
 
215
  noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
216
 
217
- logits, probs = model.forward(noisy)
218
- print(f"probs: {probs}")
219
  print(f"probs.shape: {probs.shape}")
 
220
 
221
  return
222
 
 
5
 
6
  import torch
7
  import torch.nn as nn
8
+ from torch.nn import functional as F
9
 
10
  from toolbox.torchaudio.configuration_utils import CONFIG_FILE
11
  from toolbox.torchaudio.models.vad.cnn_vad.configuration_cnn_vad import CNNVadConfig
12
  from toolbox.torchaudio.modules.conv_stft import ConvSTFT
13
+ from toolbox.torchaudio.modules.local_snr_target import LocalSnrTarget
14
 
15
 
16
  MODEL_FILE = "model.pt"
 
79
 
80
  class CNNVadModel(nn.Module):
81
  def __init__(self,
82
+ sample_rate: int,
83
  nfft: int,
84
  win_size: int,
85
  hop_size: int,
86
  win_type: str,
87
  conv2d_block_param_list: List[dict],
88
+ encoder_output_size: int,
89
+ min_local_snr: float = -15,
90
+ max_local_snr: float = 30,
91
  ):
92
  super(CNNVadModel, self).__init__()
93
+ self.sample_rate = sample_rate
94
  self.nfft = nfft
95
  self.win_size = win_size
96
  self.hop_size = hop_size
97
  self.win_type = win_type
98
  self.conv2d_block_param_list = conv2d_block_param_list
99
+ self.encoder_output_size = encoder_output_size
100
+ self.min_local_snr = min_local_snr
101
+ self.max_local_snr = max_local_snr
102
 
103
  self.eps = 1e-12
104
 
 
110
  power=1,
111
  requires_grad=False
112
  )
113
+ self.complex_stft = ConvSTFT(
114
+ nfft=nfft,
115
+ win_size=win_size,
116
+ hop_size=hop_size,
117
+ win_type=win_type,
118
+ power=None,
119
+ requires_grad=False
120
+ )
121
 
122
  self.cnn_encoder_list = nn.ModuleList(modules=[
123
  Conv2dBlock(
 
133
  for param in conv2d_block_param_list
134
  ])
135
 
136
+ # vad
137
+ self.vad_fc = nn.Sequential(
138
+ nn.Linear(encoder_output_size, 32),
139
  nn.ReLU(),
140
  nn.Linear(32, 1),
141
  )
 
142
  self.sigmoid = nn.Sigmoid()
143
 
144
+ # lsnr
145
+ self.lsnr_fc = nn.Sequential(
146
+ nn.Linear(encoder_output_size, 1),
147
+ nn.Sigmoid()
148
+ )
149
+ self.lsnr_scale = self.max_local_snr - self.min_local_snr
150
+ self.lsnr_offset = self.min_local_snr
151
+
152
+ # lsnr
153
+ self.lsnr_fn = LocalSnrTarget(
154
+ sample_rate=self.sample_rate,
155
+ nfft=self.nfft,
156
+ win_size=self.win_size,
157
+ hop_size=self.hop_size,
158
+ n_frame=self.n_frame,
159
+ min_local_snr=self.min_local_snr,
160
+ max_local_snr=self.max_local_snr,
161
+ db=True,
162
+ )
163
+
164
  def forward(self, signal: torch.Tensor):
165
  if signal.dim() == 2:
166
  signal = torch.unsqueeze(signal, dim=1)
 
184
  x = torch.reshape(x, shape=(b, t, c*d))
185
  # x: [b, t, c*d]
186
 
187
+ logits = self.vad_fc.forward(x)
188
  # logits shape: [b, t, 1]
189
  probs = self.sigmoid.forward(logits)
190
  # probs shape: [b, t, 1]
191
+
192
+ lsnr = self.lsnr_fc.forward(x) * self.lsnr_scale + self.lsnr_offset
193
+ # lsnr shape: [b, t, 1]
194
+
195
+ return logits, probs, lsnr
196
+
197
+
198
+ def lsnr_loss_fn(self, lsnr: torch.Tensor, clean: torch.Tensor, noisy: torch.Tensor):
199
+ if noisy.shape != clean.shape:
200
+ raise AssertionError("Input signals must have the same shape")
201
+ noise = noisy - clean
202
+
203
+ if clean.dim() == 2:
204
+ clean = torch.unsqueeze(clean, dim=1)
205
+ if noise.dim() == 2:
206
+ noise = torch.unsqueeze(noise, dim=1)
207
+
208
+ stft_clean = self.complex_stft.forward(clean)
209
+ stft_noise = self.complex_stft.forward(noise)
210
+ # shape: [b, f, t]
211
+ stft_clean = torch.transpose(stft_clean, dim0=1, dim1=2)
212
+ stft_noise = torch.transpose(stft_noise, dim0=1, dim1=2)
213
+ # shape: [b, t, f]
214
+ stft_clean = torch.unsqueeze(stft_clean, dim=1)
215
+ stft_noise = torch.unsqueeze(stft_noise, dim=1)
216
+ # shape: [b, 1, t, f]
217
+
218
+ # lsnr shape: [b, 1, t]
219
+ lsnr = lsnr.squeeze(1)
220
+ # lsnr shape: [b, t]
221
+
222
+ lsnr_gth = self.lsnr_fn.forward(stft_clean, stft_noise)
223
+ # lsnr_gth shape: [b, t]
224
+
225
+ loss = F.mse_loss(lsnr, lsnr_gth)
226
+ return loss
227
 
228
 
229
  class CNNVadPretrainedModel(CNNVadModel):
 
236
  hop_size=config.hop_size,
237
  win_type=config.win_type,
238
  conv2d_block_param_list=config.conv2d_block_param_list,
239
+ encoder_output_size=config.encoder_output_size,
240
+ min_local_snr=config.min_local_snr,
241
+ max_local_snr=config.max_local_snr,
242
  )
243
  self.config = config
244
 
 
287
 
288
  noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
289
 
290
+ logits, probs, lsnr = model.forward(noisy)
291
+ print(f"logits.shape: {logits.shape}")
292
  print(f"probs.shape: {probs.shape}")
293
+ print(f"lsnr.shape: {lsnr.shape}")
294
 
295
  return
296
 
toolbox/torchaudio/models/vad/cnn_vad/yaml/config.yaml CHANGED
@@ -31,7 +31,13 @@ conv2d_block_param_list:
31
  dilation: 2
32
  activation: relu
33
  dropout: 0.1
34
- classifier_input_size: 1028
 
 
 
 
 
 
35
 
36
  # data
37
  min_snr_db: -10
 
31
  dilation: 2
32
  activation: relu
33
  dropout: 0.1
34
+ encoder_output_size: 1028
35
+
36
+ # lsnr
37
+ n_frame: 3
38
+ min_local_snr_db: -15
39
+ max_local_snr_db: 30
40
+ norm_tau: 1.
41
 
42
  # data
43
  min_snr_db: -10
toolbox/torchaudio/models/vad/fsmn_vad/inference_fsmn_vad.py CHANGED
@@ -92,8 +92,15 @@ def get_args():
92
  # default=(project_path / "data/examples/hado/b556437e-c68b-4f6d-9eed-2977c29db887.wav").as_posix(),
93
  # default=(project_path / "data/examples/hado/eae93a33-8ee0-4d86-8f85-cac5116ae6ef.wav").as_posix(),
94
  # default=(project_path / "data/examples/speech/active_media_r_0ba69730-66a4-4ecd-8929-ef58f18f4612_2.wav").as_posix(),
95
- default=(project_path / "data/examples/speech/active_media_r_2a2f472b-a0b8-4fd5-b1c4-1aedc5d2ce57_0.wav").as_posix(),
96
- # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-06-17\active_media_r_0af6bd3a-9aef-4bef-935b-63abfb4d46d8_5.wav",
 
 
 
 
 
 
 
97
  type=str,
98
  )
99
  args = parser.parse_args()
 
92
  # default=(project_path / "data/examples/hado/b556437e-c68b-4f6d-9eed-2977c29db887.wav").as_posix(),
93
  # default=(project_path / "data/examples/hado/eae93a33-8ee0-4d86-8f85-cac5116ae6ef.wav").as_posix(),
94
  # default=(project_path / "data/examples/speech/active_media_r_0ba69730-66a4-4ecd-8929-ef58f18f4612_2.wav").as_posix(),
95
+ # default=(project_path / "data/examples/speech/active_media_r_2a2f472b-a0b8-4fd5-b1c4-1aedc5d2ce57_0.wav").as_posix(),
96
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_1d4edd08-c6db-41a1-a349-7a22ac36f684_6.wav",
97
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_04f6d842-488e-4e34-967b-2980fdd877c7_5.wav",
98
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_7f6670aa-5600-44c0-9bce-77c1d2b739c7_8.wav",
99
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_1187ff81-3a38-4b0b-846f-b81ad6540ce9_5.wav",
100
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_e44bbfaa-f332-4c02-90a3-cc98505d9a1b_3.wav",
101
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_f89cf1af-f556-42fd-9a42-6c9431002a12_11.wav",
102
+ # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_r_f89cf1af-f556-42fd-9a42-6c9431002a12_15.wav",
103
+ default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-05-29\active_media_w_8b6e28e2-a238-4c8c-b2e3-426b1fca149b_6.wav",
104
  type=str,
105
  )
106
  args = parser.parse_args()
toolbox/torchaudio/models/vad/ten_vad/__init__.py DELETED
@@ -1,12 +0,0 @@
1
- #!/usr/bin/python3
2
- # -*- coding: utf-8 -*-
3
- """
4
- https://huggingface.co/TEN-framework/ten-vad
5
- https://zhuanlan.zhihu.com/p/1906832842756976909
6
- https://github.com/TEN-framework/ten-vad
7
-
8
- """
9
-
10
-
11
- if __name__ == "__main__":
12
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
toolbox/torchaudio/modules/local_snr_target.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ https://github.com/Rikorose/DeepFilterNet/blob/main/DeepFilterNet/df/modules.py#L816
5
+ """
6
+ from typing import Tuple
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn import functional as F
11
+ import torchaudio
12
+
13
+
14
+ def local_energy(spec: torch.Tensor, n_frame: int, device: torch.device) -> torch.Tensor:
15
+ if n_frame % 2 == 0:
16
+ n_frame += 1
17
+ n_frame_half = n_frame // 2
18
+
19
+ # spec shape: [b, c, t, f, 2]
20
+ spec = spec.pow(2).sum(-1).sum(-1)
21
+ # spec shape: [b, c, t]
22
+ spec = F.pad(spec, (n_frame_half, n_frame_half, 0, 0))
23
+ # spec shape: [b, c, t-pad]
24
+
25
+ weight = torch.hann_window(n_frame, device=device, dtype=spec.dtype)
26
+ # w shape: [n_frame]
27
+
28
+ spec = spec.unfold(-1, size=n_frame, step=1) * weight
29
+ # x shape: [b, c, t, n_frame]
30
+
31
+ result = torch.sum(spec, dim=-1).div(n_frame)
32
+ # result shape: [b, c, t]
33
+ return result
34
+
35
+
36
+ def local_snr(spec_clean: torch.Tensor,
37
+ spec_noise: torch.Tensor,
38
+ n_frame: int = 5,
39
+ db: bool = False,
40
+ eps: float = 1e-12,
41
+ ):
42
+ # [b, c, t, f]
43
+ spec_clean = torch.view_as_real(spec_clean)
44
+ spec_noise = torch.view_as_real(spec_noise)
45
+ # [b, c, t, f, 2]
46
+
47
+ energy_clean = local_energy(spec_clean, n_frame=n_frame, device=spec_clean.device)
48
+ energy_noise = local_energy(spec_noise, n_frame=n_frame, device=spec_noise.device)
49
+ # [b, c, t]
50
+
51
+ snr = energy_clean / energy_noise.clamp_min(eps)
52
+ # snr shape: [b, c, t]
53
+
54
+ if db:
55
+ snr = snr.clamp_min(eps).log10().mul(10)
56
+ return snr, energy_clean, energy_noise
57
+
58
+
59
+ class LocalSnrTarget(nn.Module):
60
+ def __init__(self,
61
+ sample_rate: int = 8000,
62
+ nfft: int = 512,
63
+ win_size: int = 512,
64
+ hop_size: int = 256,
65
+
66
+ n_frame: int = 3,
67
+
68
+ min_local_snr: int = -15,
69
+ max_local_snr: int = 30,
70
+
71
+ db: bool = True,
72
+ ):
73
+ super().__init__()
74
+ self.sample_rate = sample_rate
75
+ self.nfft = nfft
76
+ self.win_size = win_size
77
+ self.hop_size = hop_size
78
+
79
+ self.n_frame = n_frame
80
+
81
+ self.min_local_snr = min_local_snr
82
+ self.max_local_snr = max_local_snr
83
+
84
+ self.db = db
85
+
86
+ def forward(self,
87
+ spec_clean: torch.Tensor,
88
+ spec_noise: torch.Tensor,
89
+ ) -> torch.Tensor:
90
+ """
91
+
92
+ :param spec_clean: torch.complex, shape: [b, c, t, f]
93
+ :param spec_noise: torch.complex, shape: [b, c, t, f]
94
+ :return: lsnr, shape: [b, t]
95
+ """
96
+
97
+ lsnr, _, _ = local_snr(
98
+ spec_clean=spec_clean,
99
+ spec_noise=spec_noise,
100
+ n_frame=self.n_frame,
101
+ db=self.db,
102
+ )
103
+ # lsnr shape: [b, c, t]
104
+ lsnr = lsnr.clamp(self.min_local_snr, self.max_local_snr).squeeze(1)
105
+ # lsnr shape: [b, t]
106
+ return lsnr
107
+
108
+
109
+ def main():
110
+ sample_rate = 8000
111
+ nfft = 512
112
+ win_size = 512
113
+ hop_size = 256
114
+ window_fn = "hamming"
115
+
116
+ transform = torchaudio.transforms.Spectrogram(
117
+ n_fft=nfft,
118
+ win_length=win_size,
119
+ hop_length=hop_size,
120
+ power=None,
121
+ window_fn=torch.hamming_window if window_fn == "hamming" else torch.hann_window,
122
+ )
123
+
124
+ noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
125
+
126
+ spec = transform.forward(noisy)
127
+ spec = spec.permute(0, 2, 1)
128
+ spec = torch.unsqueeze(spec, dim=1)
129
+ print(f"spec.shape: {spec.shape}, spec.dtype: {spec.dtype}")
130
+
131
+ # [b, c, t, f]
132
+ # spec = torch.view_as_real(spec)
133
+ # [b, c, t, f, 2]
134
+
135
+ local = LocalSnrTarget(
136
+ sample_rate=sample_rate,
137
+ nfft=nfft,
138
+ win_size=win_size,
139
+ hop_size=hop_size,
140
+ n_frame=5,
141
+ min_local_snr=-15,
142
+ max_local_snr=30,
143
+ db=True,
144
+ )
145
+ lsnr_target = local.forward(spec, spec)
146
+ print(f"lsnr_target.shape: {lsnr_target.shape}")
147
+ return
148
+
149
+
150
+ if __name__ == "__main__":
151
+ main()