update
Browse files- examples/silero_vad_by_webrtcvad/run.sh +17 -3
- examples/silero_vad_by_webrtcvad/step_1_prepare_data.py +1 -35
- examples/silero_vad_by_webrtcvad/step_2_make_vad_segments.py +138 -0
- examples/silero_vad_by_webrtcvad/{step_2_train_model.py → step_3_train_model.py} +10 -10
- toolbox/torchaudio/models/vad/fsmn_vad/__init__.py +6 -0
- toolbox/torchaudio/models/vad/fsmn_vad/fsmn_encoder.py +285 -0
- toolbox/torchaudio/models/vad/fsmn_vad/modeling_fsmn_vad.py +18 -0
- toolbox/torchaudio/models/vad/silero_vad/modeling_silero_vad.py +10 -8
- toolbox/webrtcvad/vad.py +19 -0
examples/silero_vad_by_webrtcvad/run.sh
CHANGED
@@ -74,6 +74,9 @@ evaluation_audio_dir="${file_dir}/evaluation_audio"
|
|
74 |
train_dataset="${file_dir}/train.jsonl"
|
75 |
valid_dataset="${file_dir}/valid.jsonl"
|
76 |
|
|
|
|
|
|
|
77 |
$verbose && echo "system_version: ${system_version}"
|
78 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
79 |
|
@@ -89,7 +92,6 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
89 |
$verbose && echo "stage 1: prepare data"
|
90 |
cd "${work_dir}" || exit 1
|
91 |
python3 step_1_prepare_data.py \
|
92 |
-
--file_dir "${file_dir}" \
|
93 |
--noise_dir "${noise_dir}" \
|
94 |
--speech_dir "${speech_dir}" \
|
95 |
--train_dataset "${train_dataset}" \
|
@@ -100,11 +102,23 @@ fi
|
|
100 |
|
101 |
|
102 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
103 |
-
$verbose && echo "stage 2:
|
104 |
cd "${work_dir}" || exit 1
|
105 |
-
python3
|
106 |
--train_dataset "${train_dataset}" \
|
107 |
--valid_dataset "${valid_dataset}" \
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
--serialization_dir "${file_dir}" \
|
109 |
--config_file "${config_file}" \
|
110 |
|
|
|
74 |
train_dataset="${file_dir}/train.jsonl"
|
75 |
valid_dataset="${file_dir}/valid.jsonl"
|
76 |
|
77 |
+
train_vad_dataset="${file_dir}/train-vad.jsonl"
|
78 |
+
valid_vad_dataset="${file_dir}/valid-vad.jsonl"
|
79 |
+
|
80 |
$verbose && echo "system_version: ${system_version}"
|
81 |
$verbose && echo "file_folder_name: ${file_folder_name}"
|
82 |
|
|
|
92 |
$verbose && echo "stage 1: prepare data"
|
93 |
cd "${work_dir}" || exit 1
|
94 |
python3 step_1_prepare_data.py \
|
|
|
95 |
--noise_dir "${noise_dir}" \
|
96 |
--speech_dir "${speech_dir}" \
|
97 |
--train_dataset "${train_dataset}" \
|
|
|
102 |
|
103 |
|
104 |
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
105 |
+
$verbose && echo "stage 2: make vad segments"
|
106 |
cd "${work_dir}" || exit 1
|
107 |
+
python3 step_2_make_vad_segments.py \
|
108 |
--train_dataset "${train_dataset}" \
|
109 |
--valid_dataset "${valid_dataset}" \
|
110 |
+
--train_vad_dataset "${train_vad_dataset}" \
|
111 |
+
--valid_vad_dataset "${valid_vad_dataset}" \
|
112 |
+
|
113 |
+
fi
|
114 |
+
|
115 |
+
|
116 |
+
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
117 |
+
$verbose && echo "stage 3: train model"
|
118 |
+
cd "${work_dir}" || exit 1
|
119 |
+
python3 step_3_train_model.py \
|
120 |
+
--train_dataset "${train_vad_dataset}" \
|
121 |
+
--valid_dataset "${valid_vad_dataset}" \
|
122 |
--serialization_dir "${file_dir}" \
|
123 |
--config_file "${config_file}" \
|
124 |
|
examples/silero_vad_by_webrtcvad/step_1_prepare_data.py
CHANGED
@@ -12,16 +12,11 @@ sys.path.append(os.path.join(pwd, "../../"))
|
|
12 |
|
13 |
import librosa
|
14 |
import numpy as np
|
15 |
-
from scipy.io import wavfile
|
16 |
from tqdm import tqdm
|
17 |
|
18 |
-
from toolbox.webrtcvad.vad import WebRTCVad
|
19 |
-
|
20 |
|
21 |
def get_args():
|
22 |
parser = argparse.ArgumentParser()
|
23 |
-
parser.add_argument("--file_dir", default="./", type=str)
|
24 |
-
|
25 |
parser.add_argument(
|
26 |
"--noise_dir",
|
27 |
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
@@ -36,7 +31,7 @@ def get_args():
|
|
36 |
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
37 |
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
38 |
|
39 |
-
parser.add_argument("--duration", default=
|
40 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
41 |
parser.add_argument("--max_snr_db", default=20, type=float)
|
42 |
|
@@ -44,12 +39,6 @@ def get_args():
|
|
44 |
|
45 |
parser.add_argument("--max_count", default=-1, type=int)
|
46 |
|
47 |
-
# vad
|
48 |
-
parser.add_argument("--agg", default=3, type=int)
|
49 |
-
parser.add_argument("--frame_duration_ms", default=30, type=int)
|
50 |
-
parser.add_argument("--padding_duration_ms", default=30, type=int)
|
51 |
-
parser.add_argument("--silence_duration_threshold", default=0.3, type=float)
|
52 |
-
|
53 |
args = parser.parse_args()
|
54 |
return args
|
55 |
|
@@ -85,9 +74,6 @@ def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate
|
|
85 |
def main():
|
86 |
args = get_args()
|
87 |
|
88 |
-
file_dir = Path(args.file_dir)
|
89 |
-
file_dir.mkdir(exist_ok=True)
|
90 |
-
|
91 |
noise_dir = Path(args.noise_dir)
|
92 |
speech_dir = Path(args.speech_dir)
|
93 |
|
@@ -104,14 +90,6 @@ def main():
|
|
104 |
max_epoch=1,
|
105 |
)
|
106 |
|
107 |
-
w_vad = WebRTCVad(
|
108 |
-
agg=args.agg,
|
109 |
-
frame_duration_ms=args.frame_duration_ms,
|
110 |
-
padding_duration_ms=args.padding_duration_ms,
|
111 |
-
silence_duration_threshold=args.silence_duration_threshold,
|
112 |
-
sample_rate=args.target_sample_rate,
|
113 |
-
)
|
114 |
-
|
115 |
count = 0
|
116 |
process_bar = tqdm(desc="build dataset jsonl")
|
117 |
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
@@ -130,14 +108,6 @@ def main():
|
|
130 |
speech_offset = speech["offset"]
|
131 |
speech_duration = speech["duration"]
|
132 |
|
133 |
-
# vad
|
134 |
-
_, signal = wavfile.read(speech_filename)
|
135 |
-
vad_segments = list()
|
136 |
-
segments = w_vad.vad(signal)
|
137 |
-
vad_segments += segments
|
138 |
-
segments = w_vad.last_vad_segments()
|
139 |
-
vad_segments += segments
|
140 |
-
|
141 |
# row
|
142 |
random1 = random.random()
|
143 |
random2 = random.random()
|
@@ -157,8 +127,6 @@ def main():
|
|
157 |
|
158 |
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
159 |
|
160 |
-
"vad_segments": vad_segments,
|
161 |
-
|
162 |
"random1": random1,
|
163 |
}
|
164 |
row = json.dumps(row, ensure_ascii=False)
|
@@ -173,9 +141,7 @@ def main():
|
|
173 |
|
174 |
process_bar.update(n=1)
|
175 |
process_bar.set_postfix({
|
176 |
-
# "duration_seconds": round(duration_seconds, 4),
|
177 |
"duration_hours": round(duration_hours, 4),
|
178 |
-
|
179 |
})
|
180 |
|
181 |
return
|
|
|
12 |
|
13 |
import librosa
|
14 |
import numpy as np
|
|
|
15 |
from tqdm import tqdm
|
16 |
|
|
|
|
|
17 |
|
18 |
def get_args():
|
19 |
parser = argparse.ArgumentParser()
|
|
|
|
|
20 |
parser.add_argument(
|
21 |
"--noise_dir",
|
22 |
default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
|
|
|
31 |
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
32 |
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
33 |
|
34 |
+
parser.add_argument("--duration", default=6.0, type=float)
|
35 |
parser.add_argument("--min_snr_db", default=-10, type=float)
|
36 |
parser.add_argument("--max_snr_db", default=20, type=float)
|
37 |
|
|
|
39 |
|
40 |
parser.add_argument("--max_count", default=-1, type=int)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
args = parser.parse_args()
|
43 |
return args
|
44 |
|
|
|
74 |
def main():
|
75 |
args = get_args()
|
76 |
|
|
|
|
|
|
|
77 |
noise_dir = Path(args.noise_dir)
|
78 |
speech_dir = Path(args.speech_dir)
|
79 |
|
|
|
90 |
max_epoch=1,
|
91 |
)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
count = 0
|
94 |
process_bar = tqdm(desc="build dataset jsonl")
|
95 |
with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
|
|
|
108 |
speech_offset = speech["offset"]
|
109 |
speech_duration = speech["duration"]
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# row
|
112 |
random1 = random.random()
|
113 |
random2 = random.random()
|
|
|
127 |
|
128 |
"snr_db": random.uniform(args.min_snr_db, args.max_snr_db),
|
129 |
|
|
|
|
|
130 |
"random1": random1,
|
131 |
}
|
132 |
row = json.dumps(row, ensure_ascii=False)
|
|
|
141 |
|
142 |
process_bar.update(n=1)
|
143 |
process_bar.set_postfix({
|
|
|
144 |
"duration_hours": round(duration_hours, 4),
|
|
|
145 |
})
|
146 |
|
147 |
return
|
examples/silero_vad_by_webrtcvad/step_2_make_vad_segments.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
|
8 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
9 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
10 |
+
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
from toolbox.webrtcvad.vad import WebRTCVad
|
16 |
+
|
17 |
+
|
18 |
+
def get_args():
|
19 |
+
parser = argparse.ArgumentParser()
|
20 |
+
|
21 |
+
parser.add_argument("--train_dataset", default="train.jsonl", type=str)
|
22 |
+
parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)
|
23 |
+
|
24 |
+
parser.add_argument("--train_vad_dataset", default="train-vad.jsonl", type=str)
|
25 |
+
parser.add_argument("--valid_vad_dataset", default="valid-vad.jsonl", type=str)
|
26 |
+
|
27 |
+
parser.add_argument("--target_sample_rate", default=8000, type=int)
|
28 |
+
|
29 |
+
# vad
|
30 |
+
parser.add_argument("--agg", default=3, type=int)
|
31 |
+
parser.add_argument("--frame_duration_ms", default=30, type=int)
|
32 |
+
parser.add_argument("--padding_duration_ms", default=30, type=int)
|
33 |
+
parser.add_argument("--silence_duration_threshold", default=0.3, type=float)
|
34 |
+
|
35 |
+
args = parser.parse_args()
|
36 |
+
return args
|
37 |
+
|
38 |
+
|
39 |
+
def main():
|
40 |
+
args = get_args()
|
41 |
+
|
42 |
+
w_vad = WebRTCVad(
|
43 |
+
agg=args.agg,
|
44 |
+
frame_duration_ms=args.frame_duration_ms,
|
45 |
+
padding_duration_ms=args.padding_duration_ms,
|
46 |
+
silence_duration_threshold=args.silence_duration_threshold,
|
47 |
+
sample_rate=args.target_sample_rate,
|
48 |
+
)
|
49 |
+
|
50 |
+
# valid
|
51 |
+
count = 0
|
52 |
+
process_bar = tqdm(desc="process valid dataset jsonl")
|
53 |
+
with (open(args.valid_dataset, "r", encoding="utf-8") as fvalid,
|
54 |
+
open(args.valid_vad_dataset, "w", encoding="utf-8") as fvalid_vad):
|
55 |
+
for row in fvalid:
|
56 |
+
row = json.loads(row)
|
57 |
+
|
58 |
+
speech_filename = row["speech_filename"]
|
59 |
+
speech_offset = row["speech_offset"]
|
60 |
+
speech_duration = row["speech_duration"]
|
61 |
+
|
62 |
+
waveform, _ = librosa.load(
|
63 |
+
speech_filename,
|
64 |
+
sr=args.expected_sample_rate,
|
65 |
+
offset=speech_offset,
|
66 |
+
duration=speech_duration,
|
67 |
+
)
|
68 |
+
waveform = np.array(waveform * (1 << 15), dtype=np.int16)
|
69 |
+
|
70 |
+
# vad
|
71 |
+
vad_segments = list()
|
72 |
+
segments = w_vad.vad(waveform)
|
73 |
+
vad_segments += segments
|
74 |
+
segments = w_vad.last_vad_segments()
|
75 |
+
vad_segments += segments
|
76 |
+
w_vad.reset()
|
77 |
+
|
78 |
+
row["vad_segments"] = vad_segments
|
79 |
+
|
80 |
+
row = json.dumps(row, ensure_ascii=False)
|
81 |
+
fvalid_vad.write(f"{row}\n")
|
82 |
+
|
83 |
+
count += 1
|
84 |
+
duration_seconds = count * args.duration
|
85 |
+
duration_hours = duration_seconds / 3600
|
86 |
+
|
87 |
+
process_bar.update(n=1)
|
88 |
+
process_bar.set_postfix({
|
89 |
+
"duration_hours": round(duration_hours, 4),
|
90 |
+
})
|
91 |
+
|
92 |
+
# train
|
93 |
+
count = 0
|
94 |
+
process_bar = tqdm(desc="process train dataset jsonl")
|
95 |
+
with (open(args.train_dataset, "r", encoding="utf-8") as ftrain,
|
96 |
+
open(args.train_vad_dataset, "w", encoding="utf-8") as ftrain_vad):
|
97 |
+
for row in ftrain:
|
98 |
+
row = json.loads(row)
|
99 |
+
|
100 |
+
speech_filename = row["speech_filename"]
|
101 |
+
speech_offset = row["speech_offset"]
|
102 |
+
speech_duration = row["speech_duration"]
|
103 |
+
|
104 |
+
waveform, _ = librosa.load(
|
105 |
+
speech_filename,
|
106 |
+
sr=args.expected_sample_rate,
|
107 |
+
offset=speech_offset,
|
108 |
+
duration=speech_duration,
|
109 |
+
)
|
110 |
+
waveform = np.array(waveform * (1 << 15), dtype=np.int16)
|
111 |
+
|
112 |
+
# vad
|
113 |
+
vad_segments = list()
|
114 |
+
segments = w_vad.vad(waveform)
|
115 |
+
vad_segments += segments
|
116 |
+
segments = w_vad.last_vad_segments()
|
117 |
+
vad_segments += segments
|
118 |
+
w_vad.reset()
|
119 |
+
|
120 |
+
row["vad_segments"] = vad_segments
|
121 |
+
|
122 |
+
row = json.dumps(row, ensure_ascii=False)
|
123 |
+
ftrain_vad.write(f"{row}\n")
|
124 |
+
|
125 |
+
count += 1
|
126 |
+
duration_seconds = count * args.duration
|
127 |
+
duration_hours = duration_seconds / 3600
|
128 |
+
|
129 |
+
process_bar.update(n=1)
|
130 |
+
process_bar.set_postfix({
|
131 |
+
"duration_hours": round(duration_hours, 4),
|
132 |
+
})
|
133 |
+
|
134 |
+
return
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
main()
|
examples/silero_vad_by_webrtcvad/{step_2_train_model.py → step_3_train_model.py}
RENAMED
@@ -246,19 +246,19 @@ def main():
|
|
246 |
# noisy_audios shape: [b, num_samples]
|
247 |
num_samples = noisy_audios.shape[-1]
|
248 |
|
249 |
-
|
250 |
|
251 |
-
targets = BaseVadLoss.get_targets(
|
252 |
|
253 |
-
bce_loss = bce_loss_fn.forward(
|
254 |
-
dice_loss = dice_loss_fn.forward(
|
255 |
|
256 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
257 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
258 |
logger.info(f"find nan or inf in loss. continue.")
|
259 |
continue
|
260 |
|
261 |
-
vad_accuracy_metrics_fn.__call__(
|
262 |
|
263 |
optimizer.zero_grad()
|
264 |
loss.backward()
|
@@ -311,19 +311,19 @@ def main():
|
|
311 |
# noisy_audios shape: [b, num_samples]
|
312 |
num_samples = noisy_audios.shape[-1]
|
313 |
|
314 |
-
|
315 |
|
316 |
-
targets = BaseVadLoss.get_targets(
|
317 |
|
318 |
-
bce_loss = bce_loss_fn.forward(
|
319 |
-
dice_loss = dice_loss_fn.forward(
|
320 |
|
321 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
322 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
323 |
logger.info(f"find nan or inf in loss. continue.")
|
324 |
continue
|
325 |
|
326 |
-
vad_accuracy_metrics_fn.__call__(
|
327 |
|
328 |
total_loss += loss.item()
|
329 |
total_bce_loss += bce_loss.item()
|
|
|
246 |
# noisy_audios shape: [b, num_samples]
|
247 |
num_samples = noisy_audios.shape[-1]
|
248 |
|
249 |
+
logits, probs = model.forward(noisy_audios)
|
250 |
|
251 |
+
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
252 |
|
253 |
+
bce_loss = bce_loss_fn.forward(probs, targets)
|
254 |
+
dice_loss = dice_loss_fn.forward(probs, targets)
|
255 |
|
256 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
257 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
258 |
logger.info(f"find nan or inf in loss. continue.")
|
259 |
continue
|
260 |
|
261 |
+
vad_accuracy_metrics_fn.__call__(probs, targets)
|
262 |
|
263 |
optimizer.zero_grad()
|
264 |
loss.backward()
|
|
|
311 |
# noisy_audios shape: [b, num_samples]
|
312 |
num_samples = noisy_audios.shape[-1]
|
313 |
|
314 |
+
logits, probs = model.forward(noisy_audios)
|
315 |
|
316 |
+
targets = BaseVadLoss.get_targets(probs, batch_vad_segments, duration=num_samples / config.sample_rate)
|
317 |
|
318 |
+
bce_loss = bce_loss_fn.forward(probs, targets)
|
319 |
+
dice_loss = dice_loss_fn.forward(probs, targets)
|
320 |
|
321 |
loss = 1.0 * bce_loss + 1.0 * dice_loss
|
322 |
if torch.any(torch.isnan(loss)) or torch.any(torch.isinf(loss)):
|
323 |
logger.info(f"find nan or inf in loss. continue.")
|
324 |
continue
|
325 |
|
326 |
+
vad_accuracy_metrics_fn.__call__(probs, targets)
|
327 |
|
328 |
total_loss += loss.item()
|
329 |
total_bce_loss += bce_loss.item()
|
toolbox/torchaudio/models/vad/fsmn_vad/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
pass
|
toolbox/torchaudio/models/vad/fsmn_vad/fsmn_encoder.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
from typing import Tuple, Dict, List
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class LinearTransform(nn.Module):
|
14 |
+
def __init__(self,
|
15 |
+
input_dim: int,
|
16 |
+
output_dim: int,
|
17 |
+
):
|
18 |
+
super(LinearTransform, self).__init__()
|
19 |
+
self.input_dim = input_dim
|
20 |
+
self.output_dim = output_dim
|
21 |
+
|
22 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
23 |
+
|
24 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
25 |
+
output = self.linear.forward(inputs)
|
26 |
+
return output
|
27 |
+
|
28 |
+
|
29 |
+
class AffineTransform(nn.Module):
|
30 |
+
def __init__(self,
|
31 |
+
input_dim: int,
|
32 |
+
output_dim: int,
|
33 |
+
):
|
34 |
+
super(AffineTransform, self).__init__()
|
35 |
+
self.input_dim = input_dim
|
36 |
+
self.output_dim = output_dim
|
37 |
+
|
38 |
+
self.linear = nn.Linear(input_dim, output_dim)
|
39 |
+
|
40 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
41 |
+
output = self.linear.forward(inputs)
|
42 |
+
return output
|
43 |
+
|
44 |
+
|
45 |
+
class RectifiedLinear(nn.Module):
|
46 |
+
def __init__(self,
|
47 |
+
input_dim: int,
|
48 |
+
output_dim: int,
|
49 |
+
):
|
50 |
+
super(RectifiedLinear, self).__init__()
|
51 |
+
self.dim = input_dim
|
52 |
+
|
53 |
+
self.relu = nn.ReLU()
|
54 |
+
self.dropout = nn.Dropout(0.1)
|
55 |
+
|
56 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
57 |
+
output = self.relu(inputs)
|
58 |
+
return output
|
59 |
+
|
60 |
+
|
61 |
+
class FSMNBlock(nn.Module):
|
62 |
+
def __init__(self,
|
63 |
+
hidden_size: int,
|
64 |
+
lorder: int,
|
65 |
+
rorder: int = -1,
|
66 |
+
lstride: int = 1,
|
67 |
+
rstride: int = 1,
|
68 |
+
):
|
69 |
+
super(FSMNBlock, self).__init__()
|
70 |
+
self.hidden_size = hidden_size
|
71 |
+
|
72 |
+
self.lorder = lorder
|
73 |
+
self.rorder = rorder
|
74 |
+
self.lstride = lstride
|
75 |
+
self.rstride = rstride
|
76 |
+
|
77 |
+
self.conv_left = nn.Conv2d(
|
78 |
+
in_channels=self.hidden_size,
|
79 |
+
out_channels=self.hidden_size,
|
80 |
+
kernel_size=[lorder, 1],
|
81 |
+
dilation=[lstride, 1],
|
82 |
+
groups=self.hidden_size,
|
83 |
+
bias=False,
|
84 |
+
)
|
85 |
+
|
86 |
+
self.conv_right = None
|
87 |
+
if self.rorder > 0:
|
88 |
+
self.conv_right = nn.Conv2d(
|
89 |
+
in_channels=self.hidden_size,
|
90 |
+
out_channels=self.hidden_size,
|
91 |
+
kernel_size=[rorder, 1],
|
92 |
+
dilation=[rstride, 1],
|
93 |
+
groups=self.hidden_size,
|
94 |
+
bias=False,
|
95 |
+
)
|
96 |
+
|
97 |
+
def forward(self,
|
98 |
+
inputs: torch.Tensor,
|
99 |
+
cache: torch.Tensor = None,
|
100 |
+
):
|
101 |
+
# inputs shape: [b, t, f]
|
102 |
+
x = torch.unsqueeze(inputs, dim=1)
|
103 |
+
# x shape: [b, 1, t, f]
|
104 |
+
x_per = x.permute(0, 3, 2, 1)
|
105 |
+
# x shape: [b, f, t, 1] / [b, c, t, 1]
|
106 |
+
|
107 |
+
if cache is None:
|
108 |
+
y_left = F.pad(x_per, pad=[0, 0, (self.lorder - 1) * self.lstride, 0])
|
109 |
+
else:
|
110 |
+
cache = cache.to(x_per.device)
|
111 |
+
y_left = torch.cat(tensors=(cache, x_per), dim=2)
|
112 |
+
cache = y_left[:, :, -(self.lorder - 1) * self.lstride:, :]
|
113 |
+
# cache shape: [b, f, t_pad, 1]
|
114 |
+
# y_left shape: [b, f, t', 1]
|
115 |
+
y_left = self.conv_left(y_left)
|
116 |
+
# y_left shape: [b, f, t, 1]
|
117 |
+
|
118 |
+
out = x_per + y_left
|
119 |
+
# out shape: [b, f, t, 1]
|
120 |
+
|
121 |
+
if self.conv_right is not None:
|
122 |
+
y_right = F.pad(x_per, pad=[0, 0, 0, self.rorder * self.rstride])
|
123 |
+
# y_right shape: [b, f, t', 1]
|
124 |
+
|
125 |
+
y_right = y_right[:, :, self.rstride:, :]
|
126 |
+
y_right = self.conv_right(y_right)
|
127 |
+
out += y_right
|
128 |
+
|
129 |
+
# out shape: [b, f, t, 1]
|
130 |
+
out_per = out.permute(0, 3, 2, 1)
|
131 |
+
# out_per shape: [b, 1, t, f]
|
132 |
+
|
133 |
+
output = out_per.squeeze(1)
|
134 |
+
# output shape: [b, t, f]
|
135 |
+
return output, cache
|
136 |
+
|
137 |
+
|
138 |
+
class BasicBlock(nn.Module):
|
139 |
+
def __init__(self,
|
140 |
+
input_size: int,
|
141 |
+
hidden_size: int,
|
142 |
+
lorder: int,
|
143 |
+
rorder: int = -1,
|
144 |
+
lstride: int = 1,
|
145 |
+
rstride: int = 1,
|
146 |
+
):
|
147 |
+
super(BasicBlock, self).__init__()
|
148 |
+
self.lorder = lorder
|
149 |
+
self.rorder = rorder
|
150 |
+
self.lstride = lstride
|
151 |
+
self.rstride = rstride
|
152 |
+
|
153 |
+
self.linear = LinearTransform(input_size, hidden_size)
|
154 |
+
self.fsmn_block = FSMNBlock(
|
155 |
+
hidden_size=hidden_size,
|
156 |
+
lorder=lorder,
|
157 |
+
rorder=rorder,
|
158 |
+
lstride=lstride,
|
159 |
+
rstride=rstride,
|
160 |
+
)
|
161 |
+
self.affine = AffineTransform(hidden_size, input_size)
|
162 |
+
self.relu = RectifiedLinear(input_size, input_size)
|
163 |
+
|
164 |
+
def forward(self,
|
165 |
+
inputs: torch.Tensor,
|
166 |
+
cache: torch.Tensor = None,
|
167 |
+
):
|
168 |
+
# inputs shape: [b, t, f]
|
169 |
+
x1 = self.linear.forward(inputs)
|
170 |
+
# x1 shape: [b, t, f']
|
171 |
+
|
172 |
+
if cache is None:
|
173 |
+
# cache shape: [b, f', t_pad, 1]
|
174 |
+
cache = torch.zeros(size=(x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1))
|
175 |
+
x2, new_cache = self.fsmn_block.forward(x1, cache=cache)
|
176 |
+
# x2 shape: [b, t, f']
|
177 |
+
|
178 |
+
x3 = self.affine.forward(x2)
|
179 |
+
# x3 shape: [b, t, f]
|
180 |
+
|
181 |
+
x4 = self.relu(x3)
|
182 |
+
return x4, new_cache
|
183 |
+
|
184 |
+
|
185 |
+
class FSMN(nn.Module):
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
input_size: int,
|
189 |
+
input_affine_size: int,
|
190 |
+
hidden_size: int,
|
191 |
+
basic_block_layers: int,
|
192 |
+
basic_block_hidden_size: int,
|
193 |
+
basic_block_lorder: int,
|
194 |
+
basic_block_rorder: int,
|
195 |
+
basic_block_lstride: int,
|
196 |
+
basic_block_rstride: int,
|
197 |
+
output_affine_size: int,
|
198 |
+
output_size: int,
|
199 |
+
use_softmax: bool = True,
|
200 |
+
):
|
201 |
+
super(FSMN, self).__init__()
|
202 |
+
self.input_size = input_size
|
203 |
+
self.input_affine_size = input_affine_size
|
204 |
+
self.hidden_size = hidden_size
|
205 |
+
|
206 |
+
self.basic_block_layers = basic_block_layers
|
207 |
+
|
208 |
+
self.output_affine_size = output_affine_size
|
209 |
+
self.output_size = output_size
|
210 |
+
|
211 |
+
self.in_linear1 = AffineTransform(input_size, input_affine_size)
|
212 |
+
self.in_linear2 = AffineTransform(input_affine_size, hidden_size)
|
213 |
+
self.relu = RectifiedLinear(hidden_size, hidden_size)
|
214 |
+
|
215 |
+
self.fsmn_basic_block_list = nn.ModuleList(modules=[
|
216 |
+
BasicBlock(input_size=hidden_size,
|
217 |
+
hidden_size=basic_block_hidden_size,
|
218 |
+
lorder=basic_block_lorder,
|
219 |
+
rorder=basic_block_rorder,
|
220 |
+
lstride=basic_block_lstride,
|
221 |
+
rstride=basic_block_rstride,
|
222 |
+
)
|
223 |
+
for _ in range(basic_block_layers)
|
224 |
+
])
|
225 |
+
self.out_linear1 = AffineTransform(hidden_size, output_affine_size)
|
226 |
+
self.out_linear2 = AffineTransform(output_affine_size, output_size)
|
227 |
+
|
228 |
+
self.use_softmax = use_softmax
|
229 |
+
if self.use_softmax:
|
230 |
+
self.softmax = nn.Softmax(dim=-1)
|
231 |
+
|
232 |
+
def forward(self,
|
233 |
+
inputs: torch.Tensor,
|
234 |
+
cache_list: List[torch.Tensor] = None,
|
235 |
+
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
236 |
+
# inputs shape: [b, t, f]
|
237 |
+
x = self.in_linear1.forward(inputs)
|
238 |
+
# x shape: [b, t, input_affine_dim]
|
239 |
+
x = self.in_linear2.forward(x)
|
240 |
+
# x shape: [b, t, f]
|
241 |
+
|
242 |
+
x = self.relu(x)
|
243 |
+
|
244 |
+
new_cache_list = list()
|
245 |
+
for idx, fsmn_basic_block in enumerate(self.fsmn_basic_block_list):
|
246 |
+
cache = None if cache_list is None else cache_list[idx]
|
247 |
+
x, new_cache = fsmn_basic_block.forward(x, cache)
|
248 |
+
new_cache_list.append(new_cache)
|
249 |
+
|
250 |
+
# x shape: [b, t, f]
|
251 |
+
x = self.out_linear1.forward(x)
|
252 |
+
outputs = self.out_linear2.forward(x)
|
253 |
+
# outputs shape: [b, t, f]
|
254 |
+
|
255 |
+
if self.use_softmax:
|
256 |
+
outputs = self.softmax(outputs)
|
257 |
+
return outputs, new_cache_list
|
258 |
+
|
259 |
+
|
260 |
+
def main():
|
261 |
+
fsmn = FSMN(
|
262 |
+
input_size=32,
|
263 |
+
input_affine_size=16,
|
264 |
+
hidden_size=16,
|
265 |
+
basic_block_layers=3,
|
266 |
+
basic_block_hidden_size=16,
|
267 |
+
basic_block_lorder=3,
|
268 |
+
basic_block_rorder=0,
|
269 |
+
basic_block_lstride=1,
|
270 |
+
basic_block_rstride=1,
|
271 |
+
output_affine_size=16,
|
272 |
+
output_size=32,
|
273 |
+
use_softmax=True,
|
274 |
+
)
|
275 |
+
|
276 |
+
inputs = torch.randn(size=(1, 198, 32), dtype=torch.float32)
|
277 |
+
|
278 |
+
result, _ = fsmn.forward(inputs)
|
279 |
+
print(result.shape)
|
280 |
+
|
281 |
+
return
|
282 |
+
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
main()
|
toolbox/torchaudio/models/vad/fsmn_vad/modeling_fsmn_vad.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary
|
5 |
+
https://huggingface.co/funasr/fsmn-vad
|
6 |
+
https://huggingface.co/funasr/fsmn-vad-onnx
|
7 |
+
|
8 |
+
https://github.com/lovemefan/fsmn-vad
|
9 |
+
|
10 |
+
https://github.com/modelscope/FunASR/blob/main/funasr/models/fsmn_vad_streaming/encoder.py
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
pass
|
toolbox/torchaudio/models/vad/silero_vad/modeling_silero_vad.py
CHANGED
@@ -115,9 +115,10 @@ class SileroVadModel(nn.Module):
|
|
115 |
nn.Linear(config.hidden_size, 32),
|
116 |
nn.ReLU(),
|
117 |
nn.Linear(32, 1),
|
118 |
-
nn.Sigmoid()
|
119 |
)
|
120 |
|
|
|
|
|
121 |
def forward(self, signal: torch.Tensor):
|
122 |
mags = self.stft.forward(signal)
|
123 |
# mags shape: [b, f, t]
|
@@ -132,10 +133,11 @@ class SileroVadModel(nn.Module):
|
|
132 |
# x shape: [b, t, f]
|
133 |
|
134 |
x, _ = self.lstm.forward(x)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
|
140 |
|
141 |
class SileroVadPretrainedModel(SileroVadModel):
|
@@ -190,9 +192,9 @@ def main():
|
|
190 |
|
191 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
192 |
|
193 |
-
probs = model.forward(noisy)
|
194 |
-
print(f"
|
195 |
-
print(f"
|
196 |
|
197 |
return
|
198 |
|
|
|
115 |
nn.Linear(config.hidden_size, 32),
|
116 |
nn.ReLU(),
|
117 |
nn.Linear(32, 1),
|
|
|
118 |
)
|
119 |
|
120 |
+
self.sigmoid = nn.Sigmoid()
|
121 |
+
|
122 |
def forward(self, signal: torch.Tensor):
|
123 |
mags = self.stft.forward(signal)
|
124 |
# mags shape: [b, f, t]
|
|
|
133 |
# x shape: [b, t, f]
|
134 |
|
135 |
x, _ = self.lstm.forward(x)
|
136 |
+
logits = self.classifier.forward(x)
|
137 |
+
# logits shape: [b, t, 1]
|
138 |
+
probs = self.sigmoid.forward(logits)
|
139 |
+
# probs shape: [b, t, 1]
|
140 |
+
return logits, probs
|
141 |
|
142 |
|
143 |
class SileroVadPretrainedModel(SileroVadModel):
|
|
|
192 |
|
193 |
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
|
194 |
|
195 |
+
logits, probs = model.forward(noisy)
|
196 |
+
print(f"logits: {probs}")
|
197 |
+
print(f"logits.shape: {logits.shape}")
|
198 |
|
199 |
return
|
200 |
|
toolbox/webrtcvad/vad.py
CHANGED
@@ -51,6 +51,24 @@ class WebRTCVad(object):
|
|
51 |
self.timestamp_start = 0.0
|
52 |
self.timestamp_end = 0.0
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def signal_to_frames(self, signal: np.ndarray):
|
55 |
frames = list()
|
56 |
|
@@ -138,6 +156,7 @@ class WebRTCVad(object):
|
|
138 |
self.timestamp_end = end
|
139 |
|
140 |
def vad(self, signal: np.ndarray) -> List[list]:
|
|
|
141 |
segments = self.segments_generator(signal)
|
142 |
vad_segments = self.vad_segments_generator(segments)
|
143 |
vad_segments = list(vad_segments)
|
|
|
51 |
self.timestamp_start = 0.0
|
52 |
self.timestamp_end = 0.0
|
53 |
|
54 |
+
def reset(self):
|
55 |
+
# frames
|
56 |
+
self.frame_length = int(self.sample_rate * (self.frame_duration_ms / 1000.0))
|
57 |
+
self.frame_timestamp = 0.0
|
58 |
+
self.signal_cache = None
|
59 |
+
|
60 |
+
# segments
|
61 |
+
self.num_padding_frames = int(self.padding_duration_ms / self.frame_duration_ms)
|
62 |
+
self.ring_buffer = collections.deque(maxlen=self.num_padding_frames)
|
63 |
+
self.triggered = False
|
64 |
+
self.voiced_frames: List[Frame] = list()
|
65 |
+
self.segments = list()
|
66 |
+
|
67 |
+
# vad segments
|
68 |
+
self.is_first_segment = True
|
69 |
+
self.timestamp_start = 0.0
|
70 |
+
self.timestamp_end = 0.0
|
71 |
+
|
72 |
def signal_to_frames(self, signal: np.ndarray):
|
73 |
frames = list()
|
74 |
|
|
|
156 |
self.timestamp_end = end
|
157 |
|
158 |
def vad(self, signal: np.ndarray) -> List[list]:
|
159 |
+
# signal dtype: np.int16
|
160 |
segments = self.segments_generator(signal)
|
161 |
vad_segments = self.vad_segments_generator(segments)
|
162 |
vad_segments = list(vad_segments)
|