Spaces:
Running
Running
update
Browse files
examples/vm_sound_classification/conv2d_classifier.yaml
CHANGED
|
@@ -10,29 +10,24 @@ mel_spectrogram_param:
|
|
| 10 |
window_fn: hamming
|
| 11 |
n_mels: 80
|
| 12 |
|
| 13 |
-
spec_augment_param:
|
| 14 |
-
aug_volume_factor_range:
|
| 15 |
-
- 0.5
|
| 16 |
-
- 2.0
|
| 17 |
-
|
| 18 |
conv2d_block_param_list:
|
| 19 |
- batch_norm: true
|
| 20 |
in_channels: 1
|
| 21 |
-
out_channels:
|
| 22 |
kernel_size: 3
|
| 23 |
stride: 1
|
| 24 |
dilation: 3
|
| 25 |
activation: relu
|
| 26 |
dropout: 0.1
|
| 27 |
-
- in_channels:
|
| 28 |
-
out_channels:
|
| 29 |
kernel_size: 5
|
| 30 |
stride: 2
|
| 31 |
dilation: 3
|
| 32 |
activation: relu
|
| 33 |
dropout: 0.1
|
| 34 |
-
- in_channels:
|
| 35 |
-
out_channels:
|
| 36 |
kernel_size: 3
|
| 37 |
stride: 1
|
| 38 |
dilation: 2
|
|
@@ -40,7 +35,7 @@ conv2d_block_param_list:
|
|
| 40 |
dropout: 0.1
|
| 41 |
|
| 42 |
cls_head_param:
|
| 43 |
-
input_dim:
|
| 44 |
num_layers: 2
|
| 45 |
hidden_dims:
|
| 46 |
- 128
|
|
|
|
| 10 |
window_fn: hamming
|
| 11 |
n_mels: 80
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
conv2d_block_param_list:
|
| 14 |
- batch_norm: true
|
| 15 |
in_channels: 1
|
| 16 |
+
out_channels: 4
|
| 17 |
kernel_size: 3
|
| 18 |
stride: 1
|
| 19 |
dilation: 3
|
| 20 |
activation: relu
|
| 21 |
dropout: 0.1
|
| 22 |
+
- in_channels: 4
|
| 23 |
+
out_channels: 4
|
| 24 |
kernel_size: 5
|
| 25 |
stride: 2
|
| 26 |
dilation: 3
|
| 27 |
activation: relu
|
| 28 |
dropout: 0.1
|
| 29 |
+
- in_channels: 4
|
| 30 |
+
out_channels: 4
|
| 31 |
kernel_size: 3
|
| 32 |
stride: 1
|
| 33 |
dilation: 2
|
|
|
|
| 35 |
dropout: 0.1
|
| 36 |
|
| 37 |
cls_head_param:
|
| 38 |
+
input_dim: 108
|
| 39 |
num_layers: 2
|
| 40 |
hidden_dims:
|
| 41 |
- 128
|
examples/vm_sound_classification/run.sh
CHANGED
|
@@ -12,8 +12,8 @@ sh run.sh --stage 2 --stop_stage 2 --system_version windows --file_folder_name f
|
|
| 12 |
E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
|
| 13 |
--label_plan 4
|
| 14 |
|
| 15 |
-
sh run.sh --stage 0 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name
|
| 16 |
-
--filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan
|
| 17 |
|
| 18 |
"
|
| 19 |
|
|
|
|
| 12 |
E:/Users/tianx/HuggingDatasets/vm_sound_classification/data/wav_finished/id-ID/wav_finished/*/*.wav" \
|
| 13 |
--label_plan 4
|
| 14 |
|
| 15 |
+
sh run.sh --stage 0 --stop_stage 5 --system_version centos --file_folder_name file_dir --final_model_name vm_sound_classification3-ch16 \
|
| 16 |
+
--filename_patterns "/data/tianxing/PycharmProjects/datasets/voicemail/*/wav_finished/*/*.wav" --label_plan 3
|
| 17 |
|
| 18 |
"
|
| 19 |
|
toolbox/torchaudio/models/cnn_audio_classifier/configuration_cnn_audio_classifier.py
CHANGED
|
@@ -8,7 +8,6 @@ from toolbox.torchaudio.configuration_utils import PretrainedConfig
|
|
| 8 |
class CnnAudioClassifierConfig(PretrainedConfig):
|
| 9 |
def __init__(self,
|
| 10 |
mel_spectrogram_param: dict,
|
| 11 |
-
spec_augment_param: dict,
|
| 12 |
cls_head_param: dict,
|
| 13 |
conv1d_block_param_list: List[dict] = None,
|
| 14 |
conv2d_block_param_list: List[dict] = None,
|
|
@@ -16,7 +15,6 @@ class CnnAudioClassifierConfig(PretrainedConfig):
|
|
| 16 |
):
|
| 17 |
super(CnnAudioClassifierConfig, self).__init__(**kwargs)
|
| 18 |
self.mel_spectrogram_param = mel_spectrogram_param
|
| 19 |
-
self.spec_augment_param = spec_augment_param
|
| 20 |
self.cls_head_param = cls_head_param
|
| 21 |
self.conv1d_block_param_list = conv1d_block_param_list
|
| 22 |
self.conv2d_block_param_list = conv2d_block_param_list
|
|
|
|
| 8 |
class CnnAudioClassifierConfig(PretrainedConfig):
|
| 9 |
def __init__(self,
|
| 10 |
mel_spectrogram_param: dict,
|
|
|
|
| 11 |
cls_head_param: dict,
|
| 12 |
conv1d_block_param_list: List[dict] = None,
|
| 13 |
conv2d_block_param_list: List[dict] = None,
|
|
|
|
| 15 |
):
|
| 16 |
super(CnnAudioClassifierConfig, self).__init__(**kwargs)
|
| 17 |
self.mel_spectrogram_param = mel_spectrogram_param
|
|
|
|
| 18 |
self.cls_head_param = cls_head_param
|
| 19 |
self.conv1d_block_param_list = conv1d_block_param_list
|
| 20 |
self.conv2d_block_param_list = conv2d_block_param_list
|
toolbox/torchaudio/models/cnn_audio_classifier/modeling_cnn_audio_classifier.py
CHANGED
|
@@ -9,7 +9,6 @@ import torchaudio
|
|
| 9 |
|
| 10 |
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
|
| 11 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
| 12 |
-
from toolbox.torchaudio.augment.spec_augment import SpecAugment
|
| 13 |
|
| 14 |
|
| 15 |
MODEL_FILE = "model.pt"
|
|
@@ -241,7 +240,6 @@ class SpectrogramEncoder(nn.Module):
|
|
| 241 |
class WaveEncoder(nn.Module):
|
| 242 |
def __init__(self,
|
| 243 |
mel_spectrogram_param: dict,
|
| 244 |
-
spec_augment_param: dict,
|
| 245 |
conv1d_block_param_list: List[dict] = None,
|
| 246 |
conv2d_block_param_list: List[dict] = None,
|
| 247 |
):
|
|
@@ -264,21 +262,11 @@ class WaveEncoder(nn.Module):
|
|
| 264 |
),
|
| 265 |
)
|
| 266 |
|
| 267 |
-
self.spec_augment = SpecAugment(
|
| 268 |
-
aug_volume_factor_range=spec_augment_param["aug_volume_factor_range"]
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
self.spectrogram_encoder = SpectrogramEncoder(
|
| 272 |
conv1d_block_param_list=conv1d_block_param_list,
|
| 273 |
conv2d_block_param_list=conv2d_block_param_list,
|
| 274 |
)
|
| 275 |
|
| 276 |
-
@torch.jit.ignore
|
| 277 |
-
def do_spec_augment(self, spec: torch.Tensor) -> torch.Tensor:
|
| 278 |
-
if self.training:
|
| 279 |
-
spec = self.spec_augment.forward(spec)
|
| 280 |
-
return spec
|
| 281 |
-
|
| 282 |
def forward(self, inputs: torch.Tensor):
|
| 283 |
# x: [batch_size, spec_dim, seq_length]
|
| 284 |
x = inputs
|
|
@@ -289,8 +277,6 @@ class WaveEncoder(nn.Module):
|
|
| 289 |
x = x.log()
|
| 290 |
x = x - torch.mean(x, dim=-1, keepdim=True)
|
| 291 |
|
| 292 |
-
x = self.do_spec_augment(x)
|
| 293 |
-
|
| 294 |
x = x.transpose(1, 2)
|
| 295 |
|
| 296 |
features = self.spectrogram_encoder.forward(x)
|
|
|
|
| 9 |
|
| 10 |
from toolbox.torchaudio.models.cnn_audio_classifier.configuration_cnn_audio_classifier import CnnAudioClassifierConfig
|
| 11 |
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
MODEL_FILE = "model.pt"
|
|
|
|
| 240 |
class WaveEncoder(nn.Module):
|
| 241 |
def __init__(self,
|
| 242 |
mel_spectrogram_param: dict,
|
|
|
|
| 243 |
conv1d_block_param_list: List[dict] = None,
|
| 244 |
conv2d_block_param_list: List[dict] = None,
|
| 245 |
):
|
|
|
|
| 262 |
),
|
| 263 |
)
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
self.spectrogram_encoder = SpectrogramEncoder(
|
| 266 |
conv1d_block_param_list=conv1d_block_param_list,
|
| 267 |
conv2d_block_param_list=conv2d_block_param_list,
|
| 268 |
)
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
def forward(self, inputs: torch.Tensor):
|
| 271 |
# x: [batch_size, spec_dim, seq_length]
|
| 272 |
x = inputs
|
|
|
|
| 277 |
x = x.log()
|
| 278 |
x = x - torch.mean(x, dim=-1, keepdim=True)
|
| 279 |
|
|
|
|
|
|
|
| 280 |
x = x.transpose(1, 2)
|
| 281 |
|
| 282 |
features = self.spectrogram_encoder.forward(x)
|