Spaces:
Running
Running
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import os | |
from pathlib import Path | |
import shutil | |
import sys | |
import tempfile | |
import zipfile | |
pwd = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(pwd, "../../")) | |
from scipy.io import wavfile | |
import torch | |
from project_settings import project_path | |
from toolbox.torch.utils.data.vocabulary import Vocabulary | |
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_file", | |
default=(project_path / "trained_models/vm_sound_classification3.zip").as_posix(), | |
type=str | |
) | |
parser.add_argument( | |
"--wav_file", | |
default=r"C:\Users\tianx\Desktop\4b284733-0be3-4a48-abbb-615b32ac44b7_6ndddc2szlh0.wav", | |
type=str | |
) | |
parser.add_argument("--device", default="cpu", type=str) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = get_args() | |
model_file = Path(args.model_file) | |
device = torch.device(args.device) | |
with zipfile.ZipFile(model_file, "r") as f_zip: | |
out_root = Path(tempfile.gettempdir()) / "vm_sound_classification" | |
print(out_root) | |
if out_root.exists(): | |
shutil.rmtree(out_root.as_posix()) | |
out_root.mkdir(parents=True, exist_ok=True) | |
f_zip.extractall(path=out_root) | |
tgt_path = out_root / model_file.stem | |
vocab_path = tgt_path / "vocabulary" | |
vocabulary = Vocabulary.from_files(vocab_path.as_posix()) | |
model = WaveClassifierPretrainedModel.from_pretrained( | |
pretrained_model_name_or_path=tgt_path.as_posix(), | |
) | |
model.to(device) | |
model.eval() | |
# infer | |
sample_rate, waveform = wavfile.read(args.wav_file) | |
waveform = waveform[:16000] | |
waveform = waveform / (1 << 15) | |
waveform = torch.tensor(waveform, dtype=torch.float32) | |
waveform = torch.unsqueeze(waveform, dim=0) | |
waveform = waveform.to(device) | |
print(waveform.shape) | |
with torch.no_grad(): | |
logits = model.forward(waveform) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
label_idx = torch.argmax(probs, dim=-1) | |
label_idx = label_idx.cpu() | |
probs = probs.cpu() | |
label_idx = label_idx.numpy()[0] | |
prob = probs.numpy()[0][label_idx] | |
label_str = vocabulary.get_token_from_index(label_idx, namespace="labels") | |
print(label_str) | |
print(prob) | |
return | |
if __name__ == '__main__': | |
main() | |