Spaces:
Sleeping
Sleeping
| #!/usr/bin/python3 | |
| # -*- coding: utf-8 -*- | |
| import argparse | |
| from collections import defaultdict | |
| import json | |
| import logging | |
| from logging.handlers import TimedRotatingFileHandler | |
| import os | |
| import platform | |
| from pathlib import Path | |
| import sys | |
| import shutil | |
| from typing import List | |
| pwd = os.path.abspath(os.path.dirname(__file__)) | |
| sys.path.append(os.path.join(pwd, "../../")) | |
| import numpy as np | |
| import torch | |
| from toolbox.torch.utils.data.vocabulary import Vocabulary | |
| from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--vocabulary_dir", default="vocabulary", type=str) | |
| parser.add_argument("--model_dir", default="best", type=str) | |
| parser.add_argument("--serialization_dir", default="serialization_dir", type=str) | |
| args = parser.parse_args() | |
| return args | |
| def logging_config(): | |
| fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s" | |
| logging.basicConfig(format=fmt, | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.DEBUG) | |
| stream_handler = logging.StreamHandler() | |
| stream_handler.setLevel(logging.INFO) | |
| stream_handler.setFormatter(logging.Formatter(fmt)) | |
| logger = logging.getLogger(__name__) | |
| return logger | |
| def main(): | |
| args = get_args() | |
| serialization_dir = Path(args.serialization_dir) | |
| logger = logging_config() | |
| logger.info("export models on CPU") | |
| device = torch.device("cpu") | |
| logger.info("prepare vocabulary, model") | |
| vocabulary = Vocabulary.from_files(args.vocabulary_dir) | |
| model = WaveClassifierPretrainedModel.from_pretrained( | |
| pretrained_model_name_or_path=args.model_dir, | |
| num_labels=vocabulary.get_vocab_size(namespace="labels") | |
| ) | |
| model.to(device) | |
| model.eval() | |
| waveform = 0 + 25 * np.random.randn(16000,) | |
| waveform = np.array(waveform, dtype=np.int16) | |
| waveform = waveform / (1 << 15) | |
| waveform = torch.tensor(waveform, dtype=torch.float32) | |
| waveform = torch.unsqueeze(waveform, dim=0) | |
| waveform = waveform.to(device) | |
| logger.info("export jit models") | |
| example_inputs = (waveform,) | |
| # trace model | |
| trace_model = torch.jit.trace(func=model, example_inputs=example_inputs, strict=False) | |
| trace_model.save(serialization_dir / "trace_model.zip") | |
| # quantization trace model (not work on GPU) | |
| quantized_model = torch.quantization.quantize_dynamic( | |
| model, {torch.nn.Linear}, dtype=torch.qint8 | |
| ) | |
| trace_quant_model = torch.jit.trace(func=quantized_model, example_inputs=example_inputs, strict=False) | |
| trace_quant_model.save(serialization_dir / "trace_quant_model.zip") | |
| # script model | |
| script_model = torch.jit.script(obj=model) | |
| script_model.save(serialization_dir / "script_model.zip") | |
| # quantization script model (not work on GPU) | |
| quantized_model = torch.quantization.quantize_dynamic( | |
| model, {torch.nn.Linear}, dtype=torch.qint8 | |
| ) | |
| script_quant_model = torch.jit.script(quantized_model) | |
| script_quant_model.save(serialization_dir / "script_quant_model.zip") | |
| return | |
| if __name__ == '__main__': | |
| main() | |