Spaces:
Running
Running
File size: 3,569 Bytes
bfa885e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import pandas as pd
from scipy.io import wavfile
import torch
from tqdm import tqdm
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveClassifierPretrainedModel
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="dataset.xlsx", type=str)
parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)
parser.add_argument("--model_dir", default="best", type=str)
parser.add_argument("--output_file", default="evaluation.xlsx", type=str)
args = parser.parse_args()
return args
def logging_config():
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.DEBUG)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
return logger
def main():
args = get_args()
logger = logging_config()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
logger.info("prepare vocabulary, model")
vocabulary = Vocabulary.from_files(args.vocabulary_dir)
model = WaveClassifierPretrainedModel.from_pretrained(
pretrained_model_name_or_path=args.model_dir,
)
model.to(device)
model.eval()
logger.info("read excel")
df = pd.read_excel(args.dataset)
result = list()
total_correct = 0
total_examples = 0
progress_bar = tqdm(total=len(df), desc="Evaluation")
for i, row in df.iterrows():
filename = row["filename"]
ground_true = row["labels"]
sample_rate, waveform = wavfile.read(filename)
waveform = waveform / (1 << 15)
waveform = torch.tensor(waveform, dtype=torch.float32)
waveform = torch.unsqueeze(waveform, dim=0)
waveform = waveform.to(device)
with torch.no_grad():
logits = model.forward(waveform)
probs = torch.nn.functional.softmax(logits, dim=-1)
label_idx = torch.argmax(probs, dim=-1)
label_idx = label_idx.cpu()
probs = probs.cpu()
label_idx = label_idx.numpy()[0]
label_str = vocabulary.get_token_from_index(label_idx, namespace="labels")
prob = probs[0][label_idx].numpy()
correct = 1 if label_str == ground_true else 0
row_ = dict(row)
row_["predict"] = label_str
row_["prob"] = prob
row_["correct"] = correct
result.append(row_)
total_examples += 1
total_correct += correct
accuracy = total_correct / total_examples
progress_bar.update(1)
progress_bar.set_postfix({
"accuracy": accuracy,
})
result = pd.DataFrame(result)
result.to_excel(
args.output_file,
index=False
)
return
if __name__ == '__main__':
main()
|