File size: 18,039 Bytes
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import sys
import shutil
from typing import List

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import pandas as pd
import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveEncoder, ClsHead, WaveClassifier


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_steps", default=100000, type=int)
    parser.add_argument("--save_steps", default=30, type=int)

    parser.add_argument("--batch_size", default=1, type=int)
    parser.add_argument("--learning_rate", default=1e-3, type=float)
    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="union", type=str)
    parser.add_argument("--seed", default=0, type=int)

    parser.add_argument("--num_workers", default=0, type=int)

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.DEBUG)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        array_list = list()
        label_list = list()
        for sample in batch:
            array = sample['waveform']
            label = sample['label']

            array_list.append(array)
            label_list.append(label)

        array_list = torch.stack(array_list)
        label_list = torch.stack(label_list)
        return array_list, label_list


collate_fn = CollateFunction()


class DatasetIterator(object):
    def __init__(self, data_loader: DataLoader):
        self.data_loader = data_loader
        self.data_loader_iter = iter(self.data_loader)

    def next(self):
        try:
            result = self.data_loader_iter.__next__()
        except StopIteration:
            self.data_loader_iter = iter(self.data_loader)
            result = self.data_loader_iter.__next__()
        return result


def main():
    args = get_args()

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(args.serialization_dir)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("GPU available count: {}; device: {}".format(n_gpu, device))

    vocabulary = Vocabulary.from_files(args.vocabulary_dir)
    namespaces = vocabulary._token_to_index.keys()

    # namespace_to_ratio
    max_radio = (len(namespaces) - 1) * 3
    namespace_to_ratio = {n: 1 for n in namespaces}
    namespace_to_ratio["global_labels"] = max_radio

    # datasets
    logger.info("prepare datasets")
    namespace_to_datasets = dict()
    for namespace in namespaces:
        logger.info("prepare datasets - {}".format(namespace))
        if namespace == "global_labels":
            train_dataset = WaveClassifierExcelDataset(
                vocab=vocabulary,
                excel_file=args.train_dataset,
                category=None,
                category_field="category",
                label_field="global_labels",
                expected_sample_rate=8000,
                max_wave_value=32768.0,
            )
            valid_dataset = WaveClassifierExcelDataset(
                vocab=vocabulary,
                excel_file=args.valid_dataset,
                category=None,
                category_field="category",
                label_field="global_labels",
                expected_sample_rate=8000,
                max_wave_value=32768.0,
            )
        else:
            train_dataset = WaveClassifierExcelDataset(
                vocab=vocabulary,
                excel_file=args.train_dataset,
                category=namespace,
                category_field="category",
                label_field="country_labels",
                expected_sample_rate=8000,
                max_wave_value=32768.0,
            )
            valid_dataset = WaveClassifierExcelDataset(
                vocab=vocabulary,
                excel_file=args.valid_dataset,
                category=namespace,
                category_field="category",
                label_field="country_labels",
                expected_sample_rate=8000,
                max_wave_value=32768.0,
            )

        train_data_loader = DataLoader(
            dataset=train_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
            # num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
            num_workers=args.num_workers,
            collate_fn=collate_fn,
            pin_memory=False,
            # prefetch_factor=64,
        )
        valid_data_loader = DataLoader(
            dataset=valid_dataset,
            batch_size=args.batch_size,
            shuffle=True,
            # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
            # num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
            num_workers=args.num_workers,
            collate_fn=collate_fn,
            pin_memory=False,
            # prefetch_factor=64,
        )

        namespace_to_datasets[namespace] = {
            "train_data_loader": train_data_loader,
            "valid_data_loader": valid_data_loader,
        }

    # datasets iterator
    logger.info("prepare datasets iterator")
    namespace_to_datasets_iter = dict()
    for namespace in namespaces:
        logger.info("prepare datasets iterator - {}".format(namespace))
        train_data_loader = namespace_to_datasets[namespace]["train_data_loader"]
        valid_data_loader = namespace_to_datasets[namespace]["valid_data_loader"]
        namespace_to_datasets_iter[namespace] = {
            "train_data_loader_iter": DatasetIterator(train_data_loader),
            "valid_data_loader_iter": DatasetIterator(valid_data_loader),
        }

    # models - encoder
    logger.info("prepare models - encoder")
    wave_encoder = WaveEncoder(
        conv2d_block_param_list=[
            {
                "batch_norm": True,
                "in_channels": 1,
                "out_channels": 4,
                "kernel_size": 3,
                "stride": 1,
                # "padding": "same",
                "dilation": 3,
                "activation": "relu",
                "dropout": 0.1,
            },
            {
                # "batch_norm": True,
                "in_channels": 4,
                "out_channels": 4,
                "kernel_size": 5,
                "stride": 2,
                # "padding": "same",
                "dilation": 3,
                "activation": "relu",
                "dropout": 0.1,
            },
            {
                # "batch_norm": True,
                "in_channels": 4,
                "out_channels": 4,
                "kernel_size": 3,
                "stride": 1,
                # "padding": "same",
                "dilation": 2,
                "activation": "relu",
                "dropout": 0.1,
            },
        ],
        mel_spectrogram_param={
            'sample_rate': 8000,
            'n_fft': 512,
            'win_length': 200,
            'hop_length': 80,
            'f_min': 10,
            'f_max': 3800,
            'window_fn': 'hamming',
            'n_mels': 80,
        }
    )

    # models - cls_head
    logger.info("prepare models - cls_head")
    namespace_to_cls_heads = dict()
    for namespace in namespaces:
        logger.info("prepare models - cls_head - {}".format(namespace))
        cls_head = ClsHead(
            input_dim=352,
            num_layers=2,
            hidden_dims=[128, 32],
            activations="relu",
            dropout=0.1,
            num_labels=vocabulary.get_vocab_size(namespace=namespace)
        )
        namespace_to_cls_heads[namespace] = cls_head

    # models - classifier
    logger.info("prepare models - classifier")
    namespace_to_classifier = dict()
    for namespace in namespaces:
        logger.info("prepare models - classifier - {}".format(namespace))
        cls_head = namespace_to_cls_heads[namespace]
        wave_classifier = WaveClassifier(
            wave_encoder=wave_encoder,
            cls_head=cls_head,
        )
        wave_classifier.to(device)
        namespace_to_classifier[namespace] = wave_classifier

    # optimizer
    logger.info("prepare optimizer")
    param_optimizer = list()
    param_optimizer.extend(wave_encoder.parameters())
    for _, cls_head in namespace_to_cls_heads.items():
        param_optimizer.extend(cls_head.parameters())

    optimizer = torch.optim.Adam(
        param_optimizer,
        lr=args.learning_rate,
    )
    lr_scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer,
        step_size=10000
    )
    focal_loss = FocalLoss(
        num_classes=vocabulary.get_vocab_size(namespace="global_labels"),
        reduction="mean",
    )

    # categorical_accuracy
    logger.info("prepare categorical_accuracy")
    namespace_to_categorical_accuracy = dict()
    for namespace in namespaces:
        categorical_accuracy = CategoricalAccuracy()
        namespace_to_categorical_accuracy[namespace] = categorical_accuracy

    # training loop
    logger.info("prepare training loop")

    model_list = list()
    best_idx_step = None
    best_accuracy = None
    patience_count = 0

    namespace_to_total_loss = defaultdict(float)
    namespace_to_total_examples = defaultdict(int)
    for idx_step in tqdm(range(args.max_steps)):

        # training one step
        loss: torch.Tensor = None
        for namespace in namespaces:
            train_data_loader_iter = namespace_to_datasets_iter[namespace]["train_data_loader_iter"]

            ratio = namespace_to_ratio[namespace]
            model = namespace_to_classifier[namespace]
            categorical_accuracy = namespace_to_categorical_accuracy[namespace]

            model.train()

            for _ in range(ratio):
                batch = train_data_loader_iter.next()
                input_ids, label_ids = batch
                input_ids = input_ids.to(device)
                label_ids: torch.LongTensor = label_ids.to(device).long()

                logits = model.forward(input_ids)
                task_loss = focal_loss.forward(logits, label_ids.view(-1))
                categorical_accuracy(logits, label_ids)

                if loss is None:
                    loss = task_loss
                else:
                    loss += task_loss

                namespace_to_total_loss[namespace] += task_loss.item()
                namespace_to_total_examples[namespace] += input_ids.size(0)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

        # logging
        if (idx_step + 1) % args.save_steps == 0:
            metrics = dict()

            # training
            for namespace in namespaces:
                total_loss = namespace_to_total_loss[namespace]
                total_examples = namespace_to_total_examples[namespace]

                training_loss = total_loss / total_examples
                training_loss = round(training_loss, 4)

                categorical_accuracy = namespace_to_categorical_accuracy[namespace]

                training_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
                training_accuracy = round(training_accuracy, 4)
                logger.info("Step: {}; namespace: {}; training_loss: {}; training_accuracy: {}".format(
                    idx_step, namespace, training_loss, training_accuracy
                ))
                metrics[namespace] = {
                    "training_loss": training_loss,
                    "training_accuracy": training_accuracy,
                }
            namespace_to_total_loss = defaultdict(float)
            namespace_to_total_examples = defaultdict(int)

            # evaluation
            for namespace in namespaces:
                valid_data_loader = namespace_to_datasets[namespace]["valid_data_loader"]

                model = namespace_to_classifier[namespace]
                categorical_accuracy = namespace_to_categorical_accuracy[namespace]

                model.eval()

                total_loss = 0
                total_examples = 0
                for step, batch in enumerate(valid_data_loader):
                    input_ids, label_ids = batch
                    input_ids = input_ids.to(device)
                    label_ids: torch.LongTensor = label_ids.to(device).long()

                    with torch.no_grad():
                        logits = model.forward(input_ids)
                        loss = focal_loss.forward(logits, label_ids.view(-1))
                        categorical_accuracy(logits, label_ids)

                    total_loss += loss.item()
                    total_examples += input_ids.size(0)

                evaluation_loss = total_loss / total_examples
                evaluation_loss = round(evaluation_loss, 4)
                evaluation_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
                evaluation_accuracy = round(evaluation_accuracy, 4)
                logger.info("Step: {}; namespace: {}; evaluation_loss: {}; evaluation_accuracy: {}".format(
                    idx_step, namespace, evaluation_loss, evaluation_accuracy
                ))
                metrics[namespace] = {
                    "evaluation_loss": evaluation_loss,
                    "evaluation_accuracy": evaluation_accuracy,
                }

            # update ratio
            min_accuracy = min([m["evaluation_accuracy"] for m in metrics.values()])
            max_accuracy = max([m["evaluation_accuracy"] for m in metrics.values()])
            width = max_accuracy - min_accuracy
            for namespace, metric in metrics.items():
                evaluation_accuracy = metric["evaluation_accuracy"]
                radio = (max_accuracy - evaluation_accuracy) / width * max_radio
                radio = int(radio)
                namespace_to_ratio[namespace] = radio

            msg = "".join(["{}: {}; ".format(k, v) for k, v in namespace_to_ratio.items()])
            logger.info("namespace to ratio: {}".format(msg))

            # save path
            step_dir = serialization_dir / "step-{}".format(idx_step)
            step_dir.mkdir(parents=True, exist_ok=False)

            # save models
            wave_encoder_filename = step_dir / "wave_encoder.pt"
            torch.save(wave_encoder.state_dict(), wave_encoder_filename)
            for namespace in namespaces:
                cls_head_filename = step_dir / "{}.pt".format(namespace)
                cls_head = namespace_to_cls_heads[namespace]
                torch.save(cls_head.state_dict(), cls_head_filename)

            model_list.append(step_dir)
            if len(model_list) >= args.num_serialized_models_to_keep:
                model_to_delete: Path = model_list.pop(0)
                shutil.rmtree(model_to_delete.as_posix())

            # save metric
            this_accuracy = metrics["global_labels"]["evaluation_accuracy"]
            if best_accuracy is None:
                best_idx_step = idx_step
                best_accuracy = this_accuracy
            elif metrics["global_labels"]["evaluation_accuracy"] > best_accuracy:
                best_idx_step = idx_step
                best_accuracy = this_accuracy
            else:
                pass

            metrics_filename = step_dir / "metrics_epoch.json"
            metrics.update({
                "idx_step": idx_step,
                "best_idx_step": best_idx_step,
            })
            with open(metrics_filename, "w", encoding="utf-8") as f:
                json.dump(metrics, f, indent=4, ensure_ascii=False)

            # save best
            best_dir = serialization_dir / "best"
            if best_idx_step == idx_step:
                if best_dir.exists():
                    shutil.rmtree(best_dir)
                shutil.copytree(step_dir, best_dir)

            # early stop
            early_stop_flag = False
            if best_idx_step == idx_step:
                patience_count = 0
            else:
                patience_count += 1
            if patience_count >= args.patience:
                early_stop_flag = True

            # early stop
            if early_stop_flag:
                break
    return


if __name__ == "__main__":
    main()