Spaces:
Running
Running
File size: 18,039 Bytes
69ad385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
import platform
from pathlib import Path
import sys
import shutil
from typing import List
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import pandas as pd
import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveEncoder, ClsHead, WaveClassifier
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--max_steps", default=100000, type=int)
parser.add_argument("--save_steps", default=30, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--learning_rate", default=1e-3, type=float)
parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
parser.add_argument("--patience", default=5, type=int)
parser.add_argument("--serialization_dir", default="union", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--num_workers", default=0, type=int)
args = parser.parse_args()
return args
def logging_config(file_dir: str):
fmt = "%(asctime)s - %(name)s - %(levelname)s %(filename)s:%(lineno)d > %(message)s"
logging.basicConfig(format=fmt,
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.DEBUG)
file_handler = TimedRotatingFileHandler(
filename=os.path.join(file_dir, "main.log"),
encoding="utf-8",
when="D",
interval=1,
backupCount=7
)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(fmt))
logger = logging.getLogger(__name__)
logger.addHandler(file_handler)
return logger
class CollateFunction(object):
def __init__(self):
pass
def __call__(self, batch: List[dict]):
array_list = list()
label_list = list()
for sample in batch:
array = sample['waveform']
label = sample['label']
array_list.append(array)
label_list.append(label)
array_list = torch.stack(array_list)
label_list = torch.stack(label_list)
return array_list, label_list
collate_fn = CollateFunction()
class DatasetIterator(object):
def __init__(self, data_loader: DataLoader):
self.data_loader = data_loader
self.data_loader_iter = iter(self.data_loader)
def next(self):
try:
result = self.data_loader_iter.__next__()
except StopIteration:
self.data_loader_iter = iter(self.data_loader)
result = self.data_loader_iter.__next__()
return result
def main():
args = get_args()
serialization_dir = Path(args.serialization_dir)
serialization_dir.mkdir(parents=True, exist_ok=True)
logger = logging_config(args.serialization_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("GPU available count: {}; device: {}".format(n_gpu, device))
vocabulary = Vocabulary.from_files(args.vocabulary_dir)
namespaces = vocabulary._token_to_index.keys()
# namespace_to_ratio
max_radio = (len(namespaces) - 1) * 3
namespace_to_ratio = {n: 1 for n in namespaces}
namespace_to_ratio["global_labels"] = max_radio
# datasets
logger.info("prepare datasets")
namespace_to_datasets = dict()
for namespace in namespaces:
logger.info("prepare datasets - {}".format(namespace))
if namespace == "global_labels":
train_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.train_dataset,
category=None,
category_field="category",
label_field="global_labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.valid_dataset,
category=None,
category_field="category",
label_field="global_labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
else:
train_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.train_dataset,
category=namespace,
category_field="category",
label_field="country_labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
valid_dataset = WaveClassifierExcelDataset(
vocab=vocabulary,
excel_file=args.valid_dataset,
category=namespace,
category_field="category",
label_field="country_labels",
expected_sample_rate=8000,
max_wave_value=32768.0,
)
train_data_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
# num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
num_workers=args.num_workers,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
valid_data_loader = DataLoader(
dataset=valid_dataset,
batch_size=args.batch_size,
shuffle=True,
# Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
# num_workers=0 if platform.system() == "Windows" else os.cpu_count() // 2,
num_workers=args.num_workers,
collate_fn=collate_fn,
pin_memory=False,
# prefetch_factor=64,
)
namespace_to_datasets[namespace] = {
"train_data_loader": train_data_loader,
"valid_data_loader": valid_data_loader,
}
# datasets iterator
logger.info("prepare datasets iterator")
namespace_to_datasets_iter = dict()
for namespace in namespaces:
logger.info("prepare datasets iterator - {}".format(namespace))
train_data_loader = namespace_to_datasets[namespace]["train_data_loader"]
valid_data_loader = namespace_to_datasets[namespace]["valid_data_loader"]
namespace_to_datasets_iter[namespace] = {
"train_data_loader_iter": DatasetIterator(train_data_loader),
"valid_data_loader_iter": DatasetIterator(valid_data_loader),
}
# models - encoder
logger.info("prepare models - encoder")
wave_encoder = WaveEncoder(
conv2d_block_param_list=[
{
"batch_norm": True,
"in_channels": 1,
"out_channels": 4,
"kernel_size": 3,
"stride": 1,
# "padding": "same",
"dilation": 3,
"activation": "relu",
"dropout": 0.1,
},
{
# "batch_norm": True,
"in_channels": 4,
"out_channels": 4,
"kernel_size": 5,
"stride": 2,
# "padding": "same",
"dilation": 3,
"activation": "relu",
"dropout": 0.1,
},
{
# "batch_norm": True,
"in_channels": 4,
"out_channels": 4,
"kernel_size": 3,
"stride": 1,
# "padding": "same",
"dilation": 2,
"activation": "relu",
"dropout": 0.1,
},
],
mel_spectrogram_param={
'sample_rate': 8000,
'n_fft': 512,
'win_length': 200,
'hop_length': 80,
'f_min': 10,
'f_max': 3800,
'window_fn': 'hamming',
'n_mels': 80,
}
)
# models - cls_head
logger.info("prepare models - cls_head")
namespace_to_cls_heads = dict()
for namespace in namespaces:
logger.info("prepare models - cls_head - {}".format(namespace))
cls_head = ClsHead(
input_dim=352,
num_layers=2,
hidden_dims=[128, 32],
activations="relu",
dropout=0.1,
num_labels=vocabulary.get_vocab_size(namespace=namespace)
)
namespace_to_cls_heads[namespace] = cls_head
# models - classifier
logger.info("prepare models - classifier")
namespace_to_classifier = dict()
for namespace in namespaces:
logger.info("prepare models - classifier - {}".format(namespace))
cls_head = namespace_to_cls_heads[namespace]
wave_classifier = WaveClassifier(
wave_encoder=wave_encoder,
cls_head=cls_head,
)
wave_classifier.to(device)
namespace_to_classifier[namespace] = wave_classifier
# optimizer
logger.info("prepare optimizer")
param_optimizer = list()
param_optimizer.extend(wave_encoder.parameters())
for _, cls_head in namespace_to_cls_heads.items():
param_optimizer.extend(cls_head.parameters())
optimizer = torch.optim.Adam(
param_optimizer,
lr=args.learning_rate,
)
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=10000
)
focal_loss = FocalLoss(
num_classes=vocabulary.get_vocab_size(namespace="global_labels"),
reduction="mean",
)
# categorical_accuracy
logger.info("prepare categorical_accuracy")
namespace_to_categorical_accuracy = dict()
for namespace in namespaces:
categorical_accuracy = CategoricalAccuracy()
namespace_to_categorical_accuracy[namespace] = categorical_accuracy
# training loop
logger.info("prepare training loop")
model_list = list()
best_idx_step = None
best_accuracy = None
patience_count = 0
namespace_to_total_loss = defaultdict(float)
namespace_to_total_examples = defaultdict(int)
for idx_step in tqdm(range(args.max_steps)):
# training one step
loss: torch.Tensor = None
for namespace in namespaces:
train_data_loader_iter = namespace_to_datasets_iter[namespace]["train_data_loader_iter"]
ratio = namespace_to_ratio[namespace]
model = namespace_to_classifier[namespace]
categorical_accuracy = namespace_to_categorical_accuracy[namespace]
model.train()
for _ in range(ratio):
batch = train_data_loader_iter.next()
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
logits = model.forward(input_ids)
task_loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
if loss is None:
loss = task_loss
else:
loss += task_loss
namespace_to_total_loss[namespace] += task_loss.item()
namespace_to_total_examples[namespace] += input_ids.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
# logging
if (idx_step + 1) % args.save_steps == 0:
metrics = dict()
# training
for namespace in namespaces:
total_loss = namespace_to_total_loss[namespace]
total_examples = namespace_to_total_examples[namespace]
training_loss = total_loss / total_examples
training_loss = round(training_loss, 4)
categorical_accuracy = namespace_to_categorical_accuracy[namespace]
training_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
training_accuracy = round(training_accuracy, 4)
logger.info("Step: {}; namespace: {}; training_loss: {}; training_accuracy: {}".format(
idx_step, namespace, training_loss, training_accuracy
))
metrics[namespace] = {
"training_loss": training_loss,
"training_accuracy": training_accuracy,
}
namespace_to_total_loss = defaultdict(float)
namespace_to_total_examples = defaultdict(int)
# evaluation
for namespace in namespaces:
valid_data_loader = namespace_to_datasets[namespace]["valid_data_loader"]
model = namespace_to_classifier[namespace]
categorical_accuracy = namespace_to_categorical_accuracy[namespace]
model.eval()
total_loss = 0
total_examples = 0
for step, batch in enumerate(valid_data_loader):
input_ids, label_ids = batch
input_ids = input_ids.to(device)
label_ids: torch.LongTensor = label_ids.to(device).long()
with torch.no_grad():
logits = model.forward(input_ids)
loss = focal_loss.forward(logits, label_ids.view(-1))
categorical_accuracy(logits, label_ids)
total_loss += loss.item()
total_examples += input_ids.size(0)
evaluation_loss = total_loss / total_examples
evaluation_loss = round(evaluation_loss, 4)
evaluation_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
evaluation_accuracy = round(evaluation_accuracy, 4)
logger.info("Step: {}; namespace: {}; evaluation_loss: {}; evaluation_accuracy: {}".format(
idx_step, namespace, evaluation_loss, evaluation_accuracy
))
metrics[namespace] = {
"evaluation_loss": evaluation_loss,
"evaluation_accuracy": evaluation_accuracy,
}
# update ratio
min_accuracy = min([m["evaluation_accuracy"] for m in metrics.values()])
max_accuracy = max([m["evaluation_accuracy"] for m in metrics.values()])
width = max_accuracy - min_accuracy
for namespace, metric in metrics.items():
evaluation_accuracy = metric["evaluation_accuracy"]
radio = (max_accuracy - evaluation_accuracy) / width * max_radio
radio = int(radio)
namespace_to_ratio[namespace] = radio
msg = "".join(["{}: {}; ".format(k, v) for k, v in namespace_to_ratio.items()])
logger.info("namespace to ratio: {}".format(msg))
# save path
step_dir = serialization_dir / "step-{}".format(idx_step)
step_dir.mkdir(parents=True, exist_ok=False)
# save models
wave_encoder_filename = step_dir / "wave_encoder.pt"
torch.save(wave_encoder.state_dict(), wave_encoder_filename)
for namespace in namespaces:
cls_head_filename = step_dir / "{}.pt".format(namespace)
cls_head = namespace_to_cls_heads[namespace]
torch.save(cls_head.state_dict(), cls_head_filename)
model_list.append(step_dir)
if len(model_list) >= args.num_serialized_models_to_keep:
model_to_delete: Path = model_list.pop(0)
shutil.rmtree(model_to_delete.as_posix())
# save metric
this_accuracy = metrics["global_labels"]["evaluation_accuracy"]
if best_accuracy is None:
best_idx_step = idx_step
best_accuracy = this_accuracy
elif metrics["global_labels"]["evaluation_accuracy"] > best_accuracy:
best_idx_step = idx_step
best_accuracy = this_accuracy
else:
pass
metrics_filename = step_dir / "metrics_epoch.json"
metrics.update({
"idx_step": idx_step,
"best_idx_step": best_idx_step,
})
with open(metrics_filename, "w", encoding="utf-8") as f:
json.dump(metrics, f, indent=4, ensure_ascii=False)
# save best
best_dir = serialization_dir / "best"
if best_idx_step == idx_step:
if best_dir.exists():
shutil.rmtree(best_dir)
shutil.copytree(step_dir, best_dir)
# early stop
early_stop_flag = False
if best_idx_step == idx_step:
patience_count = 0
else:
patience_count += 1
if patience_count >= args.patience:
early_stop_flag = True
# early stop
if early_stop_flag:
break
return
if __name__ == "__main__":
main()
|