File size: 10,877 Bytes
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
之前的代码达到准确率0.8423
此代码达到准确率0.8379
此代码可行.
"""
import argparse
import copy
import json
import logging
from logging.handlers import TimedRotatingFileHandler
import os
from pathlib import Path
import platform
import sys
from typing import List

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import torch
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm

from toolbox.torch.modules.loss import FocalLoss, HingeLoss, HingeLinear
from toolbox.torch.training.metrics.categorical_accuracy import CategoricalAccuracy
from toolbox.torch.utils.data.vocabulary import Vocabulary
from toolbox.torch.utils.data.dataset.wave_classifier_excel_dataset import WaveClassifierExcelDataset
from toolbox.torchaudio.models.cnn_audio_classifier.modeling_cnn_audio_classifier import WaveEncoder, ClsHead, WaveClassifier


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    parser.add_argument("--max_epochs", default=100, type=int)
    parser.add_argument("--batch_size", default=64, type=int)
    parser.add_argument("--learning_rate", default=1e-3, type=float)
    parser.add_argument("--num_serialized_models_to_keep", default=10, type=int)
    parser.add_argument("--patience", default=5, type=int)
    parser.add_argument("--serialization_dir", default="global_classifier", type=str)
    parser.add_argument("--seed", default=0, type=int)

    args = parser.parse_args()
    return args


def logging_config(file_dir: str):
    fmt = "%(asctime)s - %(name)s - %(levelname)s  %(filename)s:%(lineno)d >  %(message)s"

    logging.basicConfig(format=fmt,
                        datefmt="%m/%d/%Y %H:%M:%S",
                        level=logging.DEBUG)
    file_handler = TimedRotatingFileHandler(
        filename=os.path.join(file_dir, "main.log"),
        encoding="utf-8",
        when="D",
        interval=1,
        backupCount=7
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter(fmt))
    logger = logging.getLogger(__name__)
    logger.addHandler(file_handler)

    return logger


class CollateFunction(object):
    def __init__(self):
        pass

    def __call__(self, batch: List[dict]):
        array_list = list()
        label_list = list()
        for sample in batch:
            array = sample["waveform"]
            label = sample["label"]

            array_list.append(array)
            label_list.append(label)

        array_list = torch.stack(array_list)
        label_list = torch.stack(label_list)
        return array_list, label_list


collate_fn = CollateFunction()


def main():
    args = get_args()

    serialization_dir = Path(args.serialization_dir)
    serialization_dir.mkdir(parents=True, exist_ok=True)

    logger = logging_config(args.serialization_dir)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("GPU available: {}; device: {}".format(n_gpu, device))

    vocabulary = Vocabulary.from_files(args.vocabulary_dir)

    # datasets
    train_dataset = WaveClassifierExcelDataset(
        vocab=vocabulary,
        excel_file=args.train_dataset,
        category=None,
        category_field="category",
        label_field="global_labels",
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )
    valid_dataset = WaveClassifierExcelDataset(
        vocab=vocabulary,
        excel_file=args.valid_dataset,
        category=None,
        category_field="category",
        label_field="global_labels",
        expected_sample_rate=8000,
        max_wave_value=32768.0,
    )

    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count(),
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )
    valid_data_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        # Linux 系统中可以使用多个子进程加载数据, 而在 Windows 系统中不能.
        num_workers=0 if platform.system() == "Windows" else os.cpu_count(),
        collate_fn=collate_fn,
        pin_memory=False,
        # prefetch_factor=64,
    )

    # models - classifier
    wave_encoder = WaveEncoder(
        conv1d_block_param_list=[
            {
                'batch_norm': True,
                'in_channels': 80,
                'out_channels': 16,
                'kernel_size': 3,
                'stride': 3,
                # 'padding': 'same',
                'activation': 'relu',
                'dropout': 0.1,
            },
            {
                # 'batch_norm': True,
                'in_channels': 16,
                'out_channels': 16,
                'kernel_size': 3,
                'stride': 3,
                # 'padding': 'same',
                'activation': 'relu',
                'dropout': 0.1,
            },
            {
                # 'batch_norm': True,
                'in_channels': 16,
                'out_channels': 16,
                'kernel_size': 3,
                'stride': 3,
                # 'padding': 'same',
                'activation': 'relu',
                'dropout': 0.1,
            },
        ],
        mel_spectrogram_param={
            "sample_rate": 8000,
            "n_fft": 512,
            "win_length": 200,
            "hop_length": 80,
            "f_min": 10,
            "f_max": 3800,
            "window_fn": "hamming",
            "n_mels": 80,
        }
    )
    cls_head = ClsHead(
        input_dim=16,
        num_layers=2,
        hidden_dims=[32, 16],
        activations="relu",
        dropout=0.1,
        num_labels=vocabulary.get_vocab_size(namespace="global_labels")
    )
    model = WaveClassifier(
        wave_encoder=wave_encoder,
        cls_head=cls_head,
    )
    model.to(device)

    # optimizer
    optimizer = torch.optim.Adam(
        model.parameters(),
        lr=args.learning_rate
    )
    lr_scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer,
        step_size=30000
    )
    focal_loss = FocalLoss(
        num_classes=vocabulary.get_vocab_size(namespace="global_labels"),
        reduction="mean",
    )
    categorical_accuracy = CategoricalAccuracy()

    # training
    best_idx_epoch: int = None
    best_accuracy: float = None
    patience_count = 0
    global_step = 0
    model_filename_list = list()
    for idx_epoch in range(args.max_epochs):

        # training
        model.train()
        total_loss = 0
        total_examples = 0
        for step, batch in enumerate(tqdm(train_data_loader, desc="Epoch={} (training)".format(idx_epoch))):
            input_ids, label_ids = batch
            input_ids = input_ids.to(device)
            label_ids: torch.LongTensor = label_ids.to(device).long()

            logits = model.forward(input_ids)
            loss = focal_loss.forward(logits, label_ids.view(-1))
            categorical_accuracy(logits, label_ids)

            total_loss += loss.item()
            total_examples += input_ids.size(0)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()

            global_step += 1
        training_loss = total_loss / total_examples
        training_loss = round(training_loss, 4)
        training_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
        training_accuracy = round(training_accuracy, 4)
        logger.info("Epoch: {}; training_loss: {}; training_accuracy: {}".format(
            idx_epoch, training_loss, training_accuracy
        ))

        # evaluation
        model.eval()
        total_loss = 0
        total_examples = 0
        for step, batch in enumerate(tqdm(valid_data_loader, desc="Epoch={} (evaluation)".format(idx_epoch))):
            input_ids, label_ids = batch
            input_ids = input_ids.to(device)
            label_ids: torch.LongTensor = label_ids.to(device).long()

            with torch.no_grad():
                logits = model.forward(input_ids)
                loss = focal_loss.forward(logits, label_ids.view(-1))
                categorical_accuracy(logits, label_ids)

            total_loss += loss.item()
            total_examples += input_ids.size(0)

        evaluation_loss = total_loss / total_examples
        evaluation_loss = round(evaluation_loss, 4)
        evaluation_accuracy = categorical_accuracy.get_metric(reset=True)["accuracy"]
        evaluation_accuracy = round(evaluation_accuracy, 4)
        logger.info("Epoch: {}; evaluation_loss: {}; evaluation_accuracy: {}".format(
            idx_epoch, evaluation_loss, evaluation_accuracy
        ))

        # save metric
        metrics = {
            "training_loss": training_loss,
            "training_accuracy": training_accuracy,
            "evaluation_loss": evaluation_loss,
            "evaluation_accuracy": evaluation_accuracy,
            "best_idx_epoch": best_idx_epoch,
            "best_accuracy": best_accuracy,
        }
        metrics_filename = os.path.join(args.serialization_dir, "metrics_epoch_{}.json".format(idx_epoch))
        with open(metrics_filename, "w", encoding="utf-8") as f:
            json.dump(metrics, f, indent=4, ensure_ascii=False)

        # save model
        model_filename = os.path.join(args.serialization_dir, "model_epoch_{}.bin".format(idx_epoch))
        model_filename_list.append(model_filename)
        if len(model_filename_list) >= args.num_serialized_models_to_keep:
            model_filename_to_delete = model_filename_list.pop(0)
            os.remove(model_filename_to_delete)
        torch.save(model.state_dict(), model_filename)

        # early stop
        best_model_filename = os.path.join(args.serialization_dir, "best.bin")
        if best_accuracy is None:
            best_idx_epoch = idx_epoch
            best_accuracy = evaluation_accuracy
            torch.save(model.state_dict(), best_model_filename)
        elif evaluation_accuracy > best_accuracy:
            best_idx_epoch = idx_epoch
            best_accuracy = evaluation_accuracy
            torch.save(model.state_dict(), best_model_filename)
            patience_count = 0
        elif patience_count >= args.patience:
            break
        else:
            patience_count += 1

    return


if __name__ == "__main__":
    main()