File size: 1,889 Bytes
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import os
from pathlib import Path
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import pandas as pd

from toolbox.torch.utils.data.vocabulary import Vocabulary


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--vocabulary_dir", default="vocabulary", type=str)

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    args = parser.parse_args()
    return args


def main():
    args = get_args()

    train_dataset = pd.read_excel(args.train_dataset)
    valid_dataset = pd.read_excel(args.valid_dataset)

    # non_padded_namespaces
    category_set = set()
    for i, row in train_dataset.iterrows():
        category = row["category"]
        category_set.add(category)

    for i, row in valid_dataset.iterrows():
        category = row["category"]
        category_set.add(category)

    vocabulary = Vocabulary(non_padded_namespaces=["global_labels", *list(category_set)])

    # train
    for i, row in train_dataset.iterrows():
        global_labels = row["global_labels"]
        country_labels = row["country_labels"]
        category = row["category"]

        vocabulary.add_token_to_namespace(global_labels, "global_labels")
        vocabulary.add_token_to_namespace(country_labels, category)

    # valid
    for i, row in valid_dataset.iterrows():
        global_labels = row["global_labels"]
        country_labels = row["country_labels"]
        category = row["category"]

        vocabulary.add_token_to_namespace(global_labels, "global_labels")
        vocabulary.add_token_to_namespace(country_labels, category)

    vocabulary.save_to_files(args.vocabulary_dir)

    return


if __name__ == "__main__":
    main()