File size: 4,052 Bytes
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from glob import glob
import json
import os
from pathlib import Path
import random
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

import pandas as pd
from scipy.io import wavfile
from tqdm import tqdm


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--file_dir", default="./", type=str)
    parser.add_argument("--task", default="default", type=str)
    parser.add_argument("--filename_patterns", type=str)

    parser.add_argument("--train_dataset", default="train.xlsx", type=str)
    parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)

    args = parser.parse_args()
    return args


def get_dataset(args):
    filename_patterns = args.filename_patterns
    filename_patterns = filename_patterns.split(" ")
    print(filename_patterns)

    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    global_label_map = {
        "bell": "bell",
        "white_noise": "white_noise",
        "low_white_noise": "white_noise",
        "high_white_noise": "noise",
        "music": "music",
        "mute": "mute",
        "noise": "noise",
        "noise_mute": "noise_mute",
        "voice": "voice",
        "voicemail": "voicemail",
    }

    country_label_map = {
        "bell": "voicemail",
        "white_noise": "non_voicemail",
        "low_white_noise": "non_voicemail",
        "hight_white_noise": "non_voicemail",
        "music": "non_voicemail",
        "mute": "non_voicemail",
        "noise": "non_voicemail",
        "noise_mute": "non_voicemail",
        "voice": "non_voicemail",
        "voicemail": "voicemail",
        "non_voicemail": "non_voicemail",
    }

    result = list()
    for filename_pattern in filename_patterns:
        filename_list = glob(filename_pattern)
        for filename in tqdm(filename_list):
            filename = Path(filename)
            sample_rate, signal = wavfile.read(filename.as_posix())
            if len(signal) < sample_rate * 2:
                continue

            folder = filename.parts[-2]
            country = filename.parts[-4]

            if folder not in global_label_map.keys():
                continue
            if folder not in country_label_map.keys():
                continue

            global_label = global_label_map[folder]
            country_label = country_label_map[folder]

            random1 = random.random()
            random2 = random.random()

            result.append({
                "filename": filename,
                "folder": folder,
                "category": country,
                "global_labels": global_label,
                "country_labels": country_label,
                "random1": random1,
                "random2": random2,
                "flag": "TRAIN" if random2 < 0.8 else "TEST",
            })

    df = pd.DataFrame(result)
    pivot_table = pd.pivot_table(df, index=["global_labels"], values=["filename"], aggfunc="count")
    print(pivot_table)

    df = df.sort_values(by=["random1"], ascending=False)
    df.to_excel(
        file_dir / "dataset.xlsx",
        index=False,
        # encoding="utf_8_sig"
    )

    return


def split_dataset(args):
    """分割训练集, 测试集"""
    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    df = pd.read_excel(file_dir / "dataset.xlsx")

    train = list()
    test = list()

    for i, row in df.iterrows():
        flag = row["flag"]
        if flag == "TRAIN":
            train.append(row)
        else:
            test.append(row)

    train = pd.DataFrame(train)
    train.to_excel(
        args.train_dataset,
        index=False,
        # encoding="utf_8_sig"
    )
    test = pd.DataFrame(test)
    test.to_excel(
        args.valid_dataset,
        index=False,
        # encoding="utf_8_sig"
    )

    return


def main():
    args = get_args()
    get_dataset(args)
    split_dataset(args)
    return


if __name__ == "__main__":
    main()