Spaces:
Running
Running
File size: 4,836 Bytes
69ad385 6e26705 69ad385 6e26705 69ad385 6e26705 69ad385 6e26705 69ad385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from glob import glob
import json
import os
from pathlib import Path
import random
import sys
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import pandas as pd
from scipy.io import wavfile
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--file_dir", default="./", type=str)
parser.add_argument("--task", default="default", type=str)
parser.add_argument("--filename_patterns", type=str)
parser.add_argument("--train_dataset", default="train.xlsx", type=str)
parser.add_argument("--valid_dataset", default="valid.xlsx", type=str)
parser.add_argument("--label_plan", default="4", type=str)
args = parser.parse_args()
return args
def get_dataset(args):
filename_patterns = args.filename_patterns
filename_patterns = filename_patterns.split(" ")
print(filename_patterns)
file_dir = Path(args.file_dir)
file_dir.mkdir(exist_ok=True)
if args.label_plan == "2":
label_map = {
"bell": "non_voice",
"white_noise": "non_voice",
"low_white_noise": "non_voice",
"high_white_noise": "non_voice",
"music": "non_voice",
"mute": "non_voice",
"noise": "non_voice",
"noise_mute": "non_voice",
"voice": "voice",
"voicemail": "voice",
}
elif args.label_plan == "3":
label_map = {
"bell": "voicemail",
"white_noise": "mute",
"low_white_noise": "mute",
"high_white_noise": "mute",
# "music": "music",
"mute": "mute",
"noise": "voice_or_noise",
"noise_mute": "voice_or_noise",
"voice": "voice_or_noise",
"voicemail": "voicemail",
}
elif args.label_plan == "4":
label_map = {
"bell": "voicemail",
"white_noise": "mute",
"low_white_noise": "mute",
"high_white_noise": "mute",
# "music": "music",
"mute": "mute",
"noise": "noise",
"noise_mute": "noise",
"voice": "voice",
"voicemail": "voicemail",
}
elif args.label_plan == "8":
label_map = {
"bell": "bell",
"white_noise": "white_noise",
"low_white_noise": "white_noise",
"high_white_noise": "white_noise",
"music": "music",
"mute": "mute",
"noise": "noise",
"noise_mute": "noise_mute",
"voice": "voice",
"voicemail": "voicemail",
}
else:
raise AssertionError
result = list()
for filename_pattern in filename_patterns:
filename_list = glob(filename_pattern)
for filename in tqdm(filename_list):
filename = Path(filename)
sample_rate, signal = wavfile.read(filename.as_posix())
if len(signal) < sample_rate * 2:
continue
folder = filename.parts[-2]
country = filename.parts[-4]
if folder not in label_map.keys():
continue
labels = label_map[folder]
random1 = random.random()
random2 = random.random()
result.append({
"filename": filename,
"folder": folder,
"category": country,
"labels": labels,
"random1": random1,
"random2": random2,
"flag": "TRAIN" if random2 < 0.8 else "TEST",
})
df = pd.DataFrame(result)
pivot_table = pd.pivot_table(df, index=["labels"], values=["filename"], aggfunc="count")
print(pivot_table)
df = df.sort_values(by=["random1"], ascending=False)
df.to_excel(
file_dir / "dataset.xlsx",
index=False,
# encoding="utf_8_sig"
)
return
def split_dataset(args):
"""分割训练集, 测试集"""
file_dir = Path(args.file_dir)
file_dir.mkdir(exist_ok=True)
df = pd.read_excel(file_dir / "dataset.xlsx")
train = list()
test = list()
for i, row in df.iterrows():
flag = row["flag"]
if flag == "TRAIN":
train.append(row)
else:
test.append(row)
train = pd.DataFrame(train)
train.to_excel(
args.train_dataset,
index=False,
# encoding="utf_8_sig"
)
test = pd.DataFrame(test)
test.to_excel(
args.valid_dataset,
index=False,
# encoding="utf_8_sig"
)
return
def main():
args = get_args()
get_dataset(args)
split_dataset(args)
return
if __name__ == "__main__":
main()
|