Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,625 Bytes
422e042 eddcee7 f502fcb eddcee7 f502fcb 422e042 fe68a7a 422e042 0a5510e 422e042 86478a5 422e042 86478a5 422e042 86478a5 422e042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# login as a privileged user.
import os
HF_TOKEN = os.environ.get("HF_TOKEN")
from huggingface_hub import login
login(token=HF_TOKEN)
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from pyreft import ReftModel, get_intervention_locations
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# ReFT-Chat (Llama-2 7B with 1K examples)
### What's ReFT-Chat?
ReFT-Chat is a chatbot built with ReFT and Llama-2 7B. It is trained with 1K training examples from the unpaired [Ultrafeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). It is not good at multi-turn conversations. You can train your own ReFT agent and share it on HuggingFace by following this [tutorial](https://github.com/stanfordnlp/pyreft/tree/main/examples/gradio/train_and_share.ipynb)!
### Usage Terms
This should only be used for research purposes. We did not conduct additional safety training with ReFT. We evaluate this model using [Alpaca-eval](https://github.com/tatsu-lab/alpaca_eval). Performance results can be found in [our ReFT paper](https://arxiv.org/abs/2404.03592). Our model inherits all the underlying risks associated with Llama. See terms outlined below.
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-hf"
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
reft_model = ReftModel.load("pyvene/reft_chat7b_1k", model, from_huggingface_hub=True)
reft_model.set_device("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = True
prompt_no_input_template = """Below is an instruction that \
describes a task. Write a response that appropriately \
completes the request.
### Instruction:
%s
### Response:
"""
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
# tokenize and prepare the input
conversation = []
for user, assistant in chat_history:
conversation += [f"user: {user} assistant : {assistant}"]
conversation += [message]
conversation = "\n".join(conversation)
prompt = prompt_no_input_template % conversation
prompt = tokenizer(prompt, return_tensors="pt").to(model.device)
input_ids = prompt["input_ids"]
attention_mask = prompt["attention_mask"]
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
intervention_locations = torch.tensor([get_intervention_locations(
last_position=input_ids.shape[-1], positions="f5+l5",
num_interventions=len(reft_model.interventions))]).permute(1, 0, 2).tolist()
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"base": {"input_ids": prompt["input_ids"], "attention_mask": prompt["attention_mask"]},
"unit_locations": {"sources->base": (None, intervention_locations)},
"intervene_on_prompt": True,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"eos_token_id": tokenizer.eos_token_id,
"early_stopping": True,
"no_repeat_ngram_size": 5,
"repetition_penalty": repetition_penalty,
"do_sample": False,
}
t = Thread(target=reft_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.1,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|