File size: 2,153 Bytes
cc372f2 6ab9450 fe513e5 cc372f2 0650205 78e4d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
import torchaudio
import gradio as gr
device="cpu"
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load(
"NVIDIA/DeepLearningExamples:torchhub",
"nvidia_waveglow",
model_math="fp32",
pretrained=False,
)
checkpoint = torch.hub.load_state_dict_from_url(
"https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth", # noqa: E501
progress=False,
map_location=device,
)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
def inference(text):
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, _, _ = tacotron2.infer(processed, lengths)
with torch.no_grad():
waveforms = waveglow.infer(spec)
torchaudio.save("output_waveglow.wav", waveforms[0:1].cpu(), sample_rate=22050)
return "output_waveglow.wav",spec[0].cpu().detach().numpy()
title="TACOTRON 2"
description="Gradio demo for TACOTRON 2: The Tacotron 2 model for generating mel spectrograms from text. To use it, simply add you text or click on one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1712.05884' target='_blank'>Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2' target='_blank'>Github Repo</a></p>"
examples=[["life is like a box of chocolates"]]
gr.Interface(inference,"text",[gr.outputs.Audio(type="file"),gr.outputs.Image(type="numpy",label="Spectrogram")],title=title,description=description,article=article,examples=examples).launch(enable_queue=True) |