import sys from dataclasses import dataclass, field from queue import Queue import numpy as np import speech_recognition as sr def get_microphone(default_microphone: str | None = "pulse", sample_rate: int = 16000) -> sr.Microphone: """Get the specified system microphone if available.""" # Important for linux users. # Prevents permanent application hang and crash by using the wrong Microphone if "linux" in sys.platform: mic_name = default_microphone if not mic_name or mic_name == "list": mic_names = "\n".join(f"- {n}" for n in sr.Microphone.list_microphone_names()) err_msg = f"No microphone selected. Available microphone devices are:\n{mic_names}" raise ValueError(err_msg) else: for index, name in enumerate(sr.Microphone.list_microphone_names()): if mic_name in name: return sr.Microphone(sample_rate=sample_rate, device_index=index) return sr.Microphone(sample_rate=sample_rate) def get_speech_recognizer(energy_threshold: int = 300) -> sr.Recognizer: """Set up a speech recognizer with a custom energy threshold.""" # We use SpeechRecognizer to record our audio because it has a nice feature where # it can detect when speech ends. speech_recognizer = sr.Recognizer() speech_recognizer.energy_threshold = energy_threshold # Definitely do this, dynamic energy compensation lowers the energy threshold dramatically # to a point where the SpeechRecognizer never stops recording. speech_recognizer.dynamic_energy_threshold = False return speech_recognizer def to_audio_array(audio_data: bytes) -> np.ndarray: """ Convert in-ram buffer to something the model can use directly without needing a temp file. Convert data from 16 bit wide integers to floating point with a width of 32 bits. Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max. """ audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0 return audio_np def get_all_audio_queue(data_queue: Queue) -> bytes: """Returns all audio in the queue.""" audio_data = b"".join(data_queue.queue) data_queue.queue.clear() return audio_data @dataclass class AudioChunk: start_time: float end_time: float | None = None audio_array: np.ndarray = field(default_factory=lambda: np.array([])) @property def duration(self) -> float | None: return None if self.end_time is None else self.end_time - self.start_time @property def is_complete(self) -> bool: return (self.end_time is not None) and (self.audio_array.size > 0) def update_array(self, new_audio: np.ndarray) -> None: self.audio_array = np.concatenate((self.audio_array, new_audio))