File size: 4,765 Bytes
319ab81
 
 
 
 
b9fb710
bc8d394
190e978
1ba4a0c
f797e13
 
 
 
6e090f6
f797e13
 
 
 
 
 
 
190e978
1ba4a0c
 
f797e13
376e42a
f797e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a2dd5
f797e13
 
 
b9fb710
f797e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f6464
df4e440
b9fb710
4f40fa8
b9fb710
 
4f40fa8
b9fb710
 
 
 
71f6464
1ba4a0c
bc8d394
71f6464
1ba4a0c
bc8d394
1ba4a0c
f797e13
 
 
 
db56cf5
 
 
f797e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319ab81
 
 
 
 
 
 
 
 
3a9492e
 
 
319ab81
3a9492e
319ab81
 
 
 
 
 
 
f0af7d8
319ab81
f797e13
 
7a3c7e3
319ab81
7a3c7e3
319ab81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from starlette.applications import Starlette
from starlette.routing import Route
from sse_starlette.sse import EventSourceResponse
import uvicorn
import asyncio
import numpy as np
import time
import os
import httpx
from queue import Queue
import logging
from datetime import UTC, datetime, timedelta
from time import sleep
import pickle

import speech_recognition as sr

from audio_utils import get_microphone, get_speech_recognizer, get_all_audio_queue, to_audio_array, AudioChunk

logger = logging.getLogger(__name__)

TRANSCRIBING_SERVER = os.getenv('TRANSCRIBING_SERVER', "http://localhost:3535/transcribe")


def main():
    recording_duration = 1
    sample_rate = 16000
    energy_threshold = 300

    data_queue = Queue()

    microphone = get_microphone(sample_rate=sample_rate)
    speech_recognizer = get_speech_recognizer(energy_threshold=energy_threshold)

    with microphone:
        speech_recognizer.adjust_for_ambient_noise(source=microphone)

    def record_callback(_, audio: sr.AudioData) -> None:
        data = audio.get_raw_data()
        data_queue.put(data)

    speech_recognizer.listen_in_background(source=microphone, callback=record_callback, phrase_time_limit=recording_duration)

    print("\n🎤 Microphone is now listening...\n")

    prev_audio_array = None
    current_audio_chunk = AudioChunk(start_time=datetime.now(tz=UTC))

    while True:
        try:
            now = datetime.now(tz=UTC)
            # Pull raw recorded audio from the queue.
            if not data_queue.empty():
                # Store end time if we're over the recording time limit.
                if now - current_audio_chunk.start_time > timedelta(seconds=recording_duration):
                    current_audio_chunk.end_time = now

                # Get audio data from queue
                audio_data = get_all_audio_queue(data_queue)
                audio_np_array = to_audio_array(audio_data)

                if current_audio_chunk.is_complete:
                    print('start serialize')
                    if prev_audio_array is not None:
                        serialized = pickle.dumps(
                            np.concatenate((
                                prev_audio_array,
                                current_audio_chunk.audio_array
                            ))
                        )
                    else:
                        serialized = pickle.dumps(current_audio_chunk.audio_array)
                    prev_audio_array = current_audio_chunk.audio_array
                    print('end serialize')

                    start = time.time()
                    print('start req')
                    response = httpx.post(TRANSCRIBING_SERVER, data=serialized)
                    print('req done', response.text, response.status_code, time.time() - start)

                    # text = transcribe_model.transcribe(current_audio_chunk.audio_array)
                    # sentence = Sentence(
                    #     start_time=current_audio_chunk.start_time, end_time=current_audio_chunk.end_time, text=text
                    # )
                    current_audio_chunk = AudioChunk(
                        audio_array=audio_np_array, start_time=datetime.now(tz=UTC)
                    )
                    # print(sentence.text)  # noqa: T201
                else:
                    current_audio_chunk.update_array(audio_np_array)

                # Flush stdout
                print("", end="", flush=True)  # noqa: T201

                # Infinite loops are bad for processors, must sleep.
                sleep(0.25)
        except KeyboardInterrupt:
            current_audio_chunk.end_time = datetime.now(tz=UTC)
            if current_audio_chunk.is_complete:
                logger.warning("⚠️ Transcribing last chunk...")
                # text = transcribe_model.transcribe(current_audio_chunk.audio_array)
                # sentence = Sentence(
                #     start_time=current_audio_chunk.start_time, end_time=current_audio_chunk.end_time, text=text
                # )
                # print(sentence.text)  # noqa: T201
            break

async def numbers(minimum, maximum):
    for i in range(minimum, maximum + 1):
        await asyncio.sleep(0.9)
        yield dict(data=i)

async def sse(request):
    generator = numbers(1, 5)
    return EventSourceResponse(generator)

def test(request):
    return "hello world"

routes = [
    Route('/', endpoint=test),
    Route("/test", endpoint=sse)
]

app = Starlette(debug=True, routes=routes)


def server():
    uvicorn.run(app, host="0.0.0.0", port=8343, log_level='info')


if __name__ == '__main__':
    if os.getenv('PROCESS') == 'listener':
        main()
    elif os.getenv('PROCESS') == 'server':
        server()