Spaces:
Runtime error
Runtime error
app.py fixed
Browse files- app/app.py +4 -22
app/app.py
CHANGED
@@ -11,9 +11,8 @@ import matplotlib.pyplot as plt
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
from albumentations.pytorch import ToTensorV2
|
14 |
-
from PIL import Image
|
15 |
-
|
16 |
from model import Classifier
|
|
|
17 |
|
18 |
# Load the model
|
19 |
model = Classifier.load_from_checkpoint("./models/checkpoint.ckpt")
|
@@ -44,15 +43,6 @@ def preprocess(image):
|
|
44 |
return image
|
45 |
|
46 |
|
47 |
-
# Define the sample images
|
48 |
-
sample_images = {
|
49 |
-
"dog": "./test_images/dog.jpeg",
|
50 |
-
"cat": "./test_images/cat.jpeg",
|
51 |
-
"butterfly": "./test_images/butterfly.jpeg",
|
52 |
-
"elephant": "./test_images/elephant.jpg",
|
53 |
-
"horse": "./test_images/horse.jpeg",
|
54 |
-
}
|
55 |
-
|
56 |
# Define the function to make predictions on an image
|
57 |
def predict(image):
|
58 |
try:
|
@@ -65,16 +55,8 @@ def predict(image):
|
|
65 |
# convert to probabilities
|
66 |
probabilities = torch.nn.functional.softmax(output[0])
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
# convert the predictions to a list
|
71 |
-
predictions = []
|
72 |
-
for i in range(topk_prob.size(0)):
|
73 |
-
prob = topk_prob[i].item()
|
74 |
-
label = topk_label[i].item()
|
75 |
-
predictions.append((prob, label))
|
76 |
-
|
77 |
-
return predictions
|
78 |
except Exception as e:
|
79 |
print(f"Error predicting image: {e}")
|
80 |
return []
|
@@ -93,7 +75,7 @@ def app():
|
|
93 |
outputs=gr.Label(
|
94 |
num_top_classes=3,
|
95 |
),
|
96 |
-
examples=[
|
97 |
"./test_images/dog.jpeg",
|
98 |
"./test_images/cat.jpeg",
|
99 |
"./test_images/butterfly.jpeg",
|
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
from albumentations.pytorch import ToTensorV2
|
|
|
|
|
14 |
from model import Classifier
|
15 |
+
from PIL import Image
|
16 |
|
17 |
# Load the model
|
18 |
model = Classifier.load_from_checkpoint("./models/checkpoint.ckpt")
|
|
|
43 |
return image
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Define the function to make predictions on an image
|
47 |
def predict(image):
|
48 |
try:
|
|
|
55 |
# convert to probabilities
|
56 |
probabilities = torch.nn.functional.softmax(output[0])
|
57 |
|
58 |
+
# Return the top 3 predictions
|
59 |
+
return {labels[i]: float(probabilities[i]) for i in range(3)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
print(f"Error predicting image: {e}")
|
62 |
return []
|
|
|
75 |
outputs=gr.Label(
|
76 |
num_top_classes=3,
|
77 |
),
|
78 |
+
examples=examples=[
|
79 |
"./test_images/dog.jpeg",
|
80 |
"./test_images/cat.jpeg",
|
81 |
"./test_images/butterfly.jpeg",
|