Upload 2 files
Browse files- app.py +48 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from inference import Stream
|
5 |
+
import supervision as sv
|
6 |
+
|
7 |
+
annotator = sv.BoxAnnotator()
|
8 |
+
|
9 |
+
def main():
|
10 |
+
st.title("RTSP Stream with Hugging Face Streamlit")
|
11 |
+
|
12 |
+
# Set up camera connection details
|
13 |
+
ip_address = '65.108.95.124' # IP address of the camera
|
14 |
+
port = '554' # Port number for the RTSP stream
|
15 |
+
username = '' # Username (if required by the camera)
|
16 |
+
password = '' # Password (if required by the camera)
|
17 |
+
|
18 |
+
# Construct the RTSP stream URL
|
19 |
+
rtsp_url = f"rtsp://{username}:{password}@{ip_address}:{port}/testia/live"
|
20 |
+
|
21 |
+
# Display the RTSP stream using Hugging Face Streamlit
|
22 |
+
stframe = st.empty()
|
23 |
+
predictions_frame = st.empty()
|
24 |
+
|
25 |
+
with Stream(
|
26 |
+
source=rtsp_url,
|
27 |
+
model="jakojdnfin/1",
|
28 |
+
output_channel_order="BGR",
|
29 |
+
use_main_thread=True, # for OpenCV display
|
30 |
+
on_prediction=lambda predictions, image: update_predictions(predictions, image, predictions_frame)
|
31 |
+
) as stream:
|
32 |
+
while True:
|
33 |
+
image = stream.read()
|
34 |
+
if image is not None and not image.empty(): # Check if the image is not empty
|
35 |
+
# Display the image using matplotlib in the Streamlit app
|
36 |
+
fig, ax = plt.subplots()
|
37 |
+
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
38 |
+
ax.axis('off') # Hide axis
|
39 |
+
stframe.pyplot(fig)
|
40 |
+
|
41 |
+
def update_predictions(predictions, image, predictions_frame):
|
42 |
+
# Update predictions frame with annotated image
|
43 |
+
annotated_image = annotator.annotate(scene=image, detections=sv.Detections.from_roboflow(predictions))
|
44 |
+
predictions_frame.image(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB), use_column_width=True)
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
inference
|
3 |
+
supervision
|
4 |
+
opencv-python
|