import streamlit as st from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 # Set your Clarifai credentials and model details for DALL-E PAT_DALLE = 'bfdeb4029ef54d23a2e608b0aa4c00e4' USER_ID_DALLE = 'openai' APP_ID_DALLE = 'dall-e' MODEL_ID_DALLE = 'dall-e-3' MODEL_VERSION_ID_DALLE = 'dc9dcb6ee67543cebc0b9a025861b868' # Set your Clarifai credentials and model details for GPT-4 Turbo PAT_GPT4 = 'bfdeb4029ef54d23a2e608b0aa4c00e4' USER_ID_GPT4 = 'openai' APP_ID_GPT4 = 'chat-completion' MODEL_ID_GPT4 = 'gpt-4-turbo' MODEL_VERSION_ID_GPT4 = '182136408b4b4002a920fd500839f2c8' # Streamlit app st.title("Pyresearch AI Integration App") # Choose model type model_type = st.radio("Select Model Type", ["DALL-E", "GPT-4 Turbo"]) # Input text prompt from the user raw_text = st.text_input("Enter a text prompt:", 'ocr check mistake with image base with python opencv computer vision help out to know people') # Button to generate result if st.button("Generate Result"): if model_type == "DALL-E": # Connect to Clarifai API for DALL-E channel_dalle = ClarifaiChannel.get_grpc_channel() stub_dalle = service_pb2_grpc.V2Stub(channel_dalle) metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),) userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE) # Make a request to Clarifai API for DALL-E post_model_outputs_response_dalle = stub_dalle.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject_dalle, model_id=MODEL_ID_DALLE, version_id=MODEL_VERSION_ID_DALLE, inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=raw_text ) ) ) ] ), metadata=metadata_dalle ) # Display the generated image if the request is successful if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS: st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}") else: output_dalle = post_model_outputs_response_dalle.outputs[0].data.image.base64 st.image(output_dalle, caption='Generated Image (DALL-E)', use_column_width=True) elif model_type == "GPT-4 Turbo": # Connect to Clarifai API for GPT-4 Turbo channel_gpt4 = ClarifaiChannel.get_grpc_channel() stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4) metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),) userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4) # Make a request to Clarifai API for GPT-4 Turbo post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject_gpt4, model_id=MODEL_ID_GPT4, version_id=MODEL_VERSION_ID_GPT4, inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=raw_text ) ) ) ] ), metadata=metadata_gpt4 ) # Display the generated result if the request is successful if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS: st.error(f"GPT-4 Turbo API request failed: {post_model_outputs_response_gpt4.status.description}") else: output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data.image.base64 st.image(output_gpt4, caption='Generated Image (GPT-4 Turbo)', use_column_width=True) # Add the beautiful social media icon section st.markdown("""

""", unsafe_allow_html=True)