import streamlit as st from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 # Set up the Streamlit app st.title("OpenAI Models Integration") # Model selection model_option = st.selectbox("Select Model", ["GPT-4 Turbo", "GPT-4 Vision", "DALL-E API", "Text-to-Speech (TTS)"]) # Common Clarifai credentials PAT = 'bfdeb4029ef54d23a2e608b0aa4c00e4' USER_ID = 'openai' APP_ID = 'chat-completion' # Function to make API request and display output def make_api_request(model_id, model_version_id, raw_text): channel = ClarifaiChannel.get_grpc_channel() stub = service_pb2_grpc.V2Stub(channel) metadata = (('authorization', 'Key ' + PAT),) userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) post_model_outputs_response = stub.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject, model_id=model_id, version_id=model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=raw_text ) ) ) ] ), metadata=metadata ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: st.error(f"Clarifai API request failed: {post_model_outputs_response.status.description}") else: return post_model_outputs_response.outputs[0].data.image.base64 # GPT-4 Turbo if model_option == "GPT-4 Turbo": model_id = 'gpt-4-turbo' model_version_id = '182136408b4b4002a920fd500839f2c8' raw_text = st.text_area("Enter text prompt:", 'I love your product very much') if st.button("Generate Text"): output_text = make_api_request(model_id, model_version_id, raw_text) st.write("Generated Text:", output_text) # GPT-4 Vision elif model_option == "GPT-4 Vision": model_id = 'gpt-4-vision-alternative' model_version_id = '12b67ac2b5894fb9af9c06ebf8dc02fb' raw_text = st.text_area("Enter text prompt for vision:", 'A penguin watching the sunset.') if st.button("Generate Image (GPT-4 Vision)"): output_image = make_api_request(model_id, model_version_id, raw_text) st.image(output_image, caption='Generated Image', use_column_width=True) # DALL-E API elif model_option == "DALL-E API": PAT_dalle = 'bfdeb4029ef54d23a2e608b0aa4c00e4' USER_ID_dalle = 'openai' APP_ID_dalle = 'dall-e' MODEL_ID_dalle = 'dall-e-3' MODEL_VERSION_ID_dalle = 'dc9dcb6ee67543cebc0b9a025861b868' raw_text_dalle = st.text_area("Enter text prompt for DALL-E:", 'A penguin watching the sunset.') if st.button("Generate Image (DALL-E API)"): output_image_dalle = make_api_request(MODEL_ID_dalle, MODEL_VERSION_ID_dalle, raw_text_dalle) st.image(output_image_dalle, caption='Generated Image (DALL-E API)', use_column_width=True) # Text-to-Speech (TTS) elif model_option == "Text-to-Speech (TTS)": PAT_tts = 'bfdeb4029ef54d23a2e608b0aa4c00e4' USER_ID_tts = 'openai' APP_ID_tts = 'tts' MODEL_ID_tts = 'openai-tts-1' MODEL_VERSION_ID_tts = 'fff6ce1fd487457da95b79241ac6f02d' raw_text_tts = st.text_area("Enter text for Text-to-Speech:", 'I love your product very much') if st.button("Generate Speech"): output_audio = make_api_request(MODEL_ID_tts, MODEL_VERSION_ID_tts, raw_text_tts) st.audio(output_audio, format="audio/wav")