File size: 15,045 Bytes
ae67bc1
 
 
 
 
350e0db
 
 
 
 
 
 
426a38b
 
 
 
 
 
 
cef2626
 
 
 
 
 
 
3c30c07
f4725db
350e0db
 
cef2626
3c30c07
 
cef2626
3c30c07
 
4602d0a
350e0db
 
 
3c30c07
 
 
350e0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426a38b
 
 
 
 
350e0db
 
 
 
 
 
426a38b
 
 
 
 
350e0db
426a38b
 
 
 
350e0db
426a38b
 
 
350e0db
 
426a38b
350e0db
 
 
 
 
426a38b
cef2626
 
 
 
 
 
 
 
 
426a38b
cef2626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c30c07
cef2626
 
 
9411465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2

# Set your Clarifai credentials and model details for GPT-4 Vision
PAT_GPT4 = '3ca5bd8b0f2244eb8d0e4b2838fc3cf1'
USER_ID_GPT4 = 'openai'
APP_ID_GPT4 = 'chat-completion'
MODEL_ID_GPT4 = 'openai-gpt-4-vision'
MODEL_VERSION_ID_GPT4 = '266df29bc09843e0aee9b7bf723c03c2'

# Set your Clarifai credentials and model details for DALL-E
PAT_DALLE = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_DALLE = 'openai'
APP_ID_DALLE = 'dall-e'
MODEL_ID_DALLE = 'dall-e-3'
MODEL_VERSION_ID_DALLE = 'dc9dcb6ee67543cebc0b9a025861b868'

# Set your Clarifai credentials for Text-to-Speech (TTS)
PAT_TTS = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_TTS = 'openai'
APP_ID_TTS = 'tts'
MODEL_ID_TTS = 'openai-tts-1'
MODEL_VERSION_ID_TTS = 'fff6ce1fd487457da95b79241ac6f02d'

# Streamlit app
st.title("Smart Crop Advisor")

# Inserting logo
st.image("", width=200)

# Choose model type
model_type = st.radio("Select Model Type", ["GPT-4 Vision", "DALL-E", "Text-to-Speech (TTS)"])

# Input text prompt from the user
raw_text = st.text_input("Enter a text prompt:", 'What is Smart Crop Adviser?')

# File upload for image
image_upload = st.file_uploader("Upload an image:", type=["jpg", "jpeg", "png"])

# Button to generate result
if st.button("Generate Result"):
    if model_type == "GPT-4 Vision":
        # Set up gRPC channel for GPT-4 Vision
        channel_gpt4 = ClarifaiChannel.get_grpc_channel()
        stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4)
        metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),)
        userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)

        # Prepare the request for GPT-4 Vision
        input_data_gpt4 = resources_pb2.Data()

        if raw_text:
            input_data_gpt4.text.raw = raw_text

        if image_upload is not None:
            image_bytes_gpt4 = image_upload.read()
            input_data_gpt4.image.base64 = image_bytes_gpt4

        post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_gpt4,
                model_id=MODEL_ID_GPT4,
                version_id=MODEL_VERSION_ID_GPT4,
                inputs=[resources_pb2.Input(data=input_data_gpt4)]
            ),
            metadata=metadata_gpt4
        )

        # Check if the request was successful for GPT-4 Vision
        if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
            st.error(f"GPT-4 Vision API request failed: {post_model_outputs_response_gpt4.status.description}")
        else:
            # Get the output for GPT-4 Vision
            output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data

            # Display the result for GPT-4 Vision
            if output_gpt4.HasField("image"):
                st.image(output_gpt4.image.base64, caption='Generated Image (GPT-4 Vision)', use_column_width=True)
            elif output_gpt4.HasField("text"):
                st.text(output_gpt4.text.raw)

    elif model_type == "DALL-E":
        # Set up gRPC channel for DALL-E
        channel_dalle = ClarifaiChannel.get_grpc_channel()
        stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
        metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
        userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)

        # Prepare the request for DALL-E
        input_data_dalle = resources_pb2.Data()

        if raw_text:
            input_data_dalle.text.raw = raw_text

        post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_dalle,
                model_id=MODEL_ID_DALLE,
                version_id=MODEL_VERSION_ID_DALLE,
                inputs=[resources_pb2.Input(data=input_data_dalle)]
            ),
            metadata=metadata_dalle
        )

        # Check if the request was successful for DALL-E
        if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
            st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
        else:
            # Get the output for DALL-E
            output_dalle = post_model_outputs_response_dalle.outputs[0].data

            # Display the result for DALL-E
            if output_dalle.HasField("image"):
                st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
            elif output_dalle.HasField("text"):
                st.text(output_dalle.text.raw)

    elif model_type == "Text-to-Speech (TTS)":
        # Set up gRPC channel for Text-to-Speech (TTS)
        channel_tts = ClarifaiChannel.get_grpc_channel()
        stub_tts = service_pb2_grpc.V2Stub(channel_tts)
        metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
        userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)

        # Prepare the request for Text-to-Speech (TTS)
        input_data_tts = resources_pb2.Data()

        if raw_text:
            input_data_tts.text.raw = raw_text

        post_model_outputs_response_tts = stub_tts.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_tts,
                model_id=MODEL_ID_TTS,
                version_id=MODEL_VERSION_ID_TTS,
                inputs=[resources_pb2.Input(data=input_data_tts)]
            ),
            metadata=metadata_tts
        )

        # Check if the request was successful for Text-to-Speech (TTS)
        if post_model_outputs_response_tts.status.code != status_code_pb2.SUCCESS:
            st.error(f"Text-to-Speech (TTS) API request failed: {post_model_outputs_response_tts.status.description}")
        else:
            # Get the output for Text-to-Speech (TTS)
            output_tts = post_model_outputs_response_tts.outputs[0].data

            # Display the result for Text-to-Speech (TTS)
            if output_tts.HasField("audio"):
                st.audio(output_tts.audio.base64, format='audio/wav')

# Add the beautiful social media icon section
st.markdown("""
  <div align="center">
      <a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
        <a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />    
      <a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">  
        <img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>      
  </div>
  <hr>
""", unsafe_allow_html=True)