File size: 6,385 Bytes
ae67bc1
 
 
 
 
426a38b
 
 
 
 
 
 
 
 
 
 
 
 
ae67bc1
3c30c07
426a38b
3c30c07
 
426a38b
3c30c07
 
426a38b
3c30c07
 
 
426a38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c30c07
426a38b
 
 
 
 
3c30c07
426a38b
3c30c07
426a38b
 
 
3c30c07
 
 
 
 
 
ae67bc1
 
3c30c07
 
426a38b
3c30c07
426a38b
3c30c07
426a38b
 
3c30c07
426a38b
 
 
3c30c07
9411465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2

# Set your Clarifai credentials and model details for DALL-E
PAT_DALLE = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_DALLE = 'openai'
APP_ID_DALLE = 'dall-e'
MODEL_ID_DALLE = 'dall-e-3'
MODEL_VERSION_ID_DALLE = 'dc9dcb6ee67543cebc0b9a025861b868'

# Set your Clarifai credentials and model details for GPT-4 Turbo
PAT_GPT4 = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_GPT4 = 'openai'
APP_ID_GPT4 = 'chat-completion'
MODEL_ID_GPT4 = 'gpt-4-turbo'
MODEL_VERSION_ID_GPT4 = '182136408b4b4002a920fd500839f2c8'

# Streamlit app
st.title("Pyresearch AI Integration App")

# Choose model type
model_type = st.radio("Select Model Type", ["DALL-E", "GPT-4 Turbo"])

# Input text prompt from the user
raw_text = st.text_input("Enter a text prompt:", 'ocr check mistake with image base with python opencv computer vision help out to know people')

# Button to generate result
if st.button("Generate Result"):
    if model_type == "DALL-E":
        # Connect to Clarifai API for DALL-E
        channel_dalle = ClarifaiChannel.get_grpc_channel()
        stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
        metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
        userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)

        # Make a request to Clarifai API for DALL-E
        post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_dalle,
                model_id=MODEL_ID_DALLE,
                version_id=MODEL_VERSION_ID_DALLE,
                inputs=[
                    resources_pb2.Input(
                        data=resources_pb2.Data(
                            text=resources_pb2.Text(
                                raw=raw_text
                            )
                        )
                    )
                ]
            ),
            metadata=metadata_dalle
        )

        # Display the generated image if the request is successful
        if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
            st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
        else:
            output_dalle = post_model_outputs_response_dalle.outputs[0].data.image.base64
            st.image(output_dalle, caption='Generated Image (DALL-E)', use_column_width=True)

    elif model_type == "GPT-4 Turbo":
        # Connect to Clarifai API for GPT-4 Turbo
        channel_gpt4 = ClarifaiChannel.get_grpc_channel()
        stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4)
        metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),)
        userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)

        # Make a request to Clarifai API for GPT-4 Turbo
        post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_gpt4,
                model_id=MODEL_ID_GPT4,
                version_id=MODEL_VERSION_ID_GPT4,
                inputs=[
                    resources_pb2.Input(
                        data=resources_pb2.Data(
                            text=resources_pb2.Text(
                                raw=raw_text
                            )
                        )
                    )
                ]
            ),
            metadata=metadata_gpt4
        )

        # Display the generated result if the request is successful
        if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
            st.error(f"GPT-4 Turbo API request failed: {post_model_outputs_response_gpt4.status.description}")
        else:
            output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data.image.base64
            st.image(output_gpt4, caption='Generated Image (GPT-4 Turbo)', use_column_width=True)



# Add the beautiful social media icon section
st.markdown("""
  <div align="center">
      <a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
        <a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />    
      <a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">  
        <img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>      
  </div>
  <hr>
""", unsafe_allow_html=True)