import streamlit as st from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 # Set your Clarifai credentials and model details PAT = '3ca5bd8b0f2244eb8d0e4b2838fc3cf1' USER_ID = 'openai' APP_ID = 'dall-e' MODEL_ID = 'dall-e-3' MODEL_VERSION_ID = 'dc9dcb6ee67543cebc0b9a025861b868' # Streamlit app st.title("Pyresearch Image Generator") # Input text prompt from the user raw_text = st.text_input("Enter a text prompt:", 'ocr check mistake with image base with python opencv computer vision help out to know people') # Button to generate image if st.button("Generate Image"): # Connect to Clarifai API channel = ClarifaiChannel.get_grpc_channel() stub = service_pb2_grpc.V2Stub(channel) metadata = (('authorization', 'Key ' + PAT),) userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID) # Make a request to Clarifai API post_model_outputs_response = stub.PostModelOutputs( service_pb2.PostModelOutputsRequest( user_app_id=userDataObject, model_id=MODEL_ID, version_id=MODEL_VERSION_ID, inputs=[ resources_pb2.Input( data=resources_pb2.Data( text=resources_pb2.Text( raw=raw_text ) ) ) ] ), metadata=metadata ) # Display the generated image if the request is successful if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: st.error(f"Clarifai API request failed: {post_model_outputs_response.status.description}") else: output = post_model_outputs_response.outputs[0].data.image.base64 st.image(output, caption='Generated Image', use_column_width=True)