File size: 1,527 Bytes
2fb98a5
 
 
 
aad13ce
2fb98a5
aad13ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb98a5
aad13ce
2fb98a5
aad13ce
 
 
 
 
 
 
 
 
 
 
 
 
2fb98a5
 
 
 
 
aad13ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2

# Set your Clarifai credentials and model details
PAT = '3ca5bd8b0f2244eb8d0e4b2838fc3cf1'
USER_ID = 'openai'
APP_ID = 'dall-e'
MODEL_ID = 'dall-e-3'
MODEL_VERSION_ID = 'dc9dcb6ee67543cebc0b9a025861b868'
RAW_TEXT = 'ocr check mistake with image base with python opencv computer vision help out to know people'

channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)

metadata = (('authorization', 'Key ' + PAT),)

userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID)

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        user_app_id=userDataObject,
        model_id=MODEL_ID,
        version_id=MODEL_VERSION_ID,
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    text=resources_pb2.Text(
                        raw=RAW_TEXT
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    st.error(f"Clarifai API request failed: {post_model_outputs_response.status.description}")
else:
    output = post_model_outputs_response.outputs[0].data.image.base64
    st.image(output, caption='Generated Image', use_column_width=True)