import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") st.title("Text Generation with Hugging Face Transformers") # Input prompt from user prompt = st.text_area("Enter a prompt:", "this news is real pyresearch given right computer vision videos?") # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device=device, trust_remote_code=True) # Generate text on button click if st.button("Generate"): with torch.no_grad(): token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device) output_ids = model.generate( token_ids, max_new_tokens=512, do_sample=True, temperature=0.1 ) generated_text = tokenizer.decode(output_ids[0][token_ids.size(1):]) st.text("Generated Text:") st.write(generated_text)