Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,233 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
|
4 |
-
from clarifai_grpc.grpc.api.status import status_code_pb2
|
5 |
import torch
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# GPT-4 credentials
|
10 |
-
PAT_GPT4 = "3ca5bd8b0f2244eb8d0e4b2838fc3cf1"
|
11 |
-
USER_ID_GPT4 = "openai"
|
12 |
-
APP_ID_GPT4 = "chat-completion"
|
13 |
-
MODEL_ID_GPT4 = "openai-gpt-4-vision"
|
14 |
-
MODEL_VERSION_ID_GPT4 = "266df29bc09843e0aee9b7bf723c03c2"
|
15 |
-
|
16 |
-
# DALL-E credentials
|
17 |
-
PAT_DALLE = "bfdeb4029ef54d23a2e608b0aa4c00e4"
|
18 |
-
USER_ID_DALLE = "openai"
|
19 |
-
APP_ID_DALLE = "dall-e"
|
20 |
-
MODEL_ID_DALLE = "dall-e-3"
|
21 |
-
MODEL_VERSION_ID_DALLE = "dc9dcb6ee67543cebc0b9a025861b868"
|
22 |
-
|
23 |
-
# TTS credentials
|
24 |
-
PAT_TTS = "bfdeb4029ef54d23a2e608b0aa4c00e4"
|
25 |
-
USER_ID_TTS = "openai"
|
26 |
-
APP_ID_TTS = "tts"
|
27 |
-
MODEL_ID_TTS = "openai-tts-1"
|
28 |
-
MODEL_VERSION_ID_TTS = "fff6ce1fd487457da95b79241ac6f02d"
|
29 |
-
|
30 |
-
# NewsGuardian model credentials
|
31 |
-
PAT_NEWSGUARDIAN = "your_news_guardian_pat"
|
32 |
-
USER_ID_NEWSGUARDIAN = "your_user_id"
|
33 |
-
APP_ID_NEWSGUARDIAN = "your_app_id"
|
34 |
-
MODEL_ID_NEWSGUARDIAN = "your_model_id"
|
35 |
-
MODEL_VERSION_ID_NEWSGUARDIAN = "your_model_version_id"
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Set up gRPC channel for NewsGuardian model
|
43 |
-
channel_tts = ClarifaiChannel.get_grpc_channel()
|
44 |
-
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
|
45 |
-
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
|
46 |
-
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS,)
|
47 |
|
48 |
# Streamlit app
|
49 |
-
st.title("
|
50 |
-
|
51 |
-
|
52 |
-
# Inserting logo
|
53 |
-
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTdA-MJ_SUCRgLs1prqudpMdaX4x-x10Zqlwp7cpzXWCMM9xjBAJYWdJsDlLoHBqNpj8qs&usqp=CAU")
|
54 |
-
# Function to get gRPC channel for NewsGuardian model
|
55 |
-
def get_tts_channel():
|
56 |
-
channel_tts = ClarifaiChannel.get_grpc_channel()
|
57 |
-
return channel_tts, channel_tts.metadata
|
58 |
-
|
59 |
|
|
|
60 |
|
61 |
# User input
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)
|
74 |
-
|
75 |
-
# Prepare the request for NewsGuardian model
|
76 |
-
input_data_gpt4 = resources_pb2.Data()
|
77 |
-
|
78 |
-
if raw_text:
|
79 |
-
input_data_gpt4.text.raw = raw_text
|
80 |
-
|
81 |
-
if image_upload is not None:
|
82 |
-
image_bytes_gpt4 = image_upload.read()
|
83 |
-
input_data_gpt4.image.base64 = image_bytes_gpt4
|
84 |
-
|
85 |
-
post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
|
86 |
-
service_pb2.PostModelOutputsRequest(
|
87 |
-
user_app_id=userDataObject_gpt4,
|
88 |
-
model_id=MODEL_ID_GPT4,
|
89 |
-
version_id=MODEL_VERSION_ID_GPT4,
|
90 |
-
inputs=[resources_pb2.Input(data=input_data_gpt4)]
|
91 |
-
),
|
92 |
-
metadata=metadata_gpt4 # Use metadata directly in the gRPC request
|
93 |
-
)
|
94 |
-
|
95 |
-
# Check if the request was successful for NewsGuardian model
|
96 |
-
if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
|
97 |
-
st.error(f"NewsGuardian model API request failed: {post_model_outputs_response_gpt4.status.description}")
|
98 |
-
else:
|
99 |
-
# Get the output for NewsGuardian model
|
100 |
-
output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data
|
101 |
-
|
102 |
-
# Display the result for NewsGuardian model
|
103 |
-
if output_gpt4.HasField("image"):
|
104 |
-
st.image(output_gpt4.image.base64, caption='Generated Image (NewsGuardian model)', use_column_width=True)
|
105 |
-
elif output_gpt4.HasField("text"):
|
106 |
-
# Display the text result
|
107 |
-
st.text(output_gpt4.text.raw)
|
108 |
-
|
109 |
-
# Convert text to speech and play the audio
|
110 |
-
stub_tts = service_pb2_grpc.V2Stub(channel_gpt4) # Use the same channel for TTS
|
111 |
-
|
112 |
-
tts_input_data = resources_pb2.Data()
|
113 |
-
tts_input_data.text.raw = output_gpt4.text.raw
|
114 |
-
|
115 |
-
tts_response = stub_tts.PostModelOutputs(
|
116 |
-
service_pb2.PostModelOutputsRequest(
|
117 |
-
user_app_id=userDataObject_tts,
|
118 |
-
model_id=MODEL_ID_TTS,
|
119 |
-
version_id=MODEL_VERSION_ID_TTS,
|
120 |
-
inputs=[resources_pb2.Input(data=tts_input_data)]
|
121 |
-
),
|
122 |
-
metadata=metadata_gpt4 # Use the same metadata for TTS
|
123 |
-
)
|
124 |
-
|
125 |
-
# Check if the TTS request was successful
|
126 |
-
if tts_response.status.code == status_code_pb2.SUCCESS:
|
127 |
-
tts_output = tts_response.outputs[0].data
|
128 |
-
st.audio(tts_output.audio.base64, format='audio/wav')
|
129 |
-
else:
|
130 |
-
st.error(f"NewsGuardian model API request failed: {tts_response.status.description}")
|
131 |
-
|
132 |
-
elif model_type == "DALL-E":
|
133 |
-
# Set up gRPC channel for DALL-E
|
134 |
-
channel_dalle = ClarifaiChannel.get_grpc_channel()
|
135 |
-
stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
|
136 |
-
metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
|
137 |
-
userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)
|
138 |
-
|
139 |
-
# Prepare the request for DALL-E
|
140 |
-
input_data_dalle = resources_pb2.Data()
|
141 |
-
|
142 |
-
if raw_text:
|
143 |
-
input_data_dalle.text.raw = raw_text
|
144 |
-
|
145 |
-
post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
|
146 |
-
service_pb2.PostModelOutputsRequest(
|
147 |
-
user_app_id=userDataObject_dalle,
|
148 |
-
model_id=MODEL_ID_DALLE,
|
149 |
-
version_id=MODEL_VERSION_ID_DALLE,
|
150 |
-
inputs=[resources_pb2.Input(data=input_data_dalle)]
|
151 |
-
),
|
152 |
-
metadata=metadata_dalle
|
153 |
-
)
|
154 |
-
|
155 |
-
# Check if the request was successful for DALL-E
|
156 |
-
if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
|
157 |
-
st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
|
158 |
-
else:
|
159 |
-
# Get the output for DALL-E
|
160 |
-
output_dalle = post_model_outputs_response_dalle.outputs[0].data
|
161 |
-
|
162 |
-
# Display the result for DALL-E
|
163 |
-
if output_dalle.HasField("image"):
|
164 |
-
st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
|
165 |
-
elif output_dalle.HasField("text"):
|
166 |
-
st.text(output_dalle.text.raw)
|
167 |
-
|
168 |
-
elif model_type == "NewsGuardian model":
|
169 |
-
# Set up gRPC channel for NewsGuardian model
|
170 |
-
channel_tts = ClarifaiChannel.get_grpc_channel()
|
171 |
-
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
|
172 |
-
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
|
173 |
-
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)
|
174 |
-
|
175 |
-
# Prepare the request for NewsGuardian model
|
176 |
-
input_data_tts = resources_pb2.Data()
|
177 |
-
|
178 |
-
if raw_text:
|
179 |
-
input_data_tts.text.raw = raw_text
|
180 |
-
|
181 |
-
post_model_outputs_response_tts = stub_tts.PostModelOutputs(
|
182 |
-
service_pb2.PostModelOutputsRequest(
|
183 |
-
user_app_id=userDataObject_tts,
|
184 |
-
model_id=MODEL_ID_TTS,
|
185 |
-
version_id=MODEL_VERSION_ID_TTS,
|
186 |
-
inputs=[resources_pb2.Input(data=input_data_tts)]
|
187 |
-
),
|
188 |
-
metadata=metadata_tts
|
189 |
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
else:
|
195 |
-
# Get the output for NewsGuardian model
|
196 |
-
output_tts = post_model_outputs_response_tts.outputs[0].data
|
197 |
-
|
198 |
-
# Display the result for NewsGuardian model
|
199 |
-
if output_tts.HasField("text"):
|
200 |
-
st.text(output_tts.text.raw)
|
201 |
-
|
202 |
-
if output_tts.HasField("audio"):
|
203 |
-
st.audio(output_tts.audio.base64, format='audio/wav')
|
204 |
-
|
205 |
-
|
206 |
-
# Add the beautiful social media icon section
|
207 |
-
st.markdown("""
|
208 |
-
<div align="center">
|
209 |
-
<a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
|
210 |
-
<img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
|
211 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
212 |
-
<a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
|
213 |
-
<img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
|
214 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
215 |
-
<a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
|
216 |
-
<img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
|
217 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
218 |
-
<a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
|
219 |
-
<img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
|
220 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
221 |
-
<a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
|
222 |
-
<img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
|
223 |
-
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
|
224 |
-
<a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">
|
225 |
-
<img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>
|
226 |
-
</div>
|
227 |
-
<hr>
|
228 |
-
""", unsafe_allow_html=True)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
3 |
import torch
|
|
|
4 |
|
5 |
+
# Load tokenizer and model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
"microsoft/phi-2", torch_dtype="auto", device_map="auto", trust_remote_code=True
|
9 |
+
)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Streamlit app
|
13 |
+
st.title("Fake news Generation with Transformers Microsoft phi-2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg")
|
16 |
|
17 |
# User input
|
18 |
+
prompt = st.text_area("Enter your prompt:", "This news is real or fake you get results from here NewsGuardian")
|
19 |
+
|
20 |
+
# Generate output
|
21 |
+
if st.button("Generate"):
|
22 |
+
with torch.no_grad():
|
23 |
+
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
24 |
+
output_ids = model.generate(
|
25 |
+
token_ids.to(model.device),
|
26 |
+
max_new_tokens=20,
|
27 |
+
do_sample=True,
|
28 |
+
temperature=0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
|
31 |
+
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
|
32 |
+
st.text("Generated Output:")
|
33 |
+
st.write(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|