Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,16 @@ import torch
|
|
4 |
|
5 |
# Load tokenizer and model
|
6 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
"microsoft/phi-2", torch_dtype=torch.float32, device_map="auto", trust_remote_code=True
|
12 |
)
|
13 |
|
14 |
-
|
15 |
# Streamlit app
|
16 |
st.title("Fake news Generation with Transformers Microsoft phi-2")
|
17 |
-
|
18 |
st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg")
|
19 |
|
20 |
# User input
|
21 |
-
prompt = st.text_area("Enter your prompt:", "This news is real or fake you get results from here NewsGuardian")
|
22 |
|
23 |
# Generate output
|
24 |
if st.button("Generate"):
|
|
|
4 |
|
5 |
# Load tokenizer and model
|
6 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
|
|
|
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(
|
8 |
"microsoft/phi-2", torch_dtype=torch.float32, device_map="auto", trust_remote_code=True
|
9 |
)
|
10 |
|
|
|
11 |
# Streamlit app
|
12 |
st.title("Fake news Generation with Transformers Microsoft phi-2")
|
|
|
13 |
st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg")
|
14 |
|
15 |
# User input
|
16 |
+
prompt = st.text_area("Enter your prompt:", "This news is real or fake; you get results from here NewsGuardian")
|
17 |
|
18 |
# Generate output
|
19 |
if st.button("Generate"):
|