Fake-news-facts / app.py
pyresearch's picture
Update app.py
f191d24 verified
raw
history blame
989 Bytes
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the Phi 2 model and tokenizer outside the Streamlit app
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", device_map="auto", trust_remote_code=True)
# Streamlit UI
st.title("Microsoft Phi 2 Streamlit App")
# User input prompt
prompt = st.text_area("Enter your prompt:", "Write a story about Nasa")
# Generate output based on user input
if st.button("Generate Output"):
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=512,
do_sample=True,
temperature=0.3
)
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
st.text("Generated Output:")
st.write(output)