File size: 8,380 Bytes
7e297e1
 
 
 
e443228
 
7e297e1
e443228
7e297e1
 
 
e443228
7e297e1
e443228
 
 
7e297e1
4cfe952
7e297e1
 
 
 
 
 
8638438
7e297e1
 
 
e443228
4cfe952
7e297e1
 
 
 
 
e443228
7e297e1
 
 
 
8638438
25f4eeb
 
7e297e1
 
 
 
 
25f4eeb
7e297e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f4eeb
7e297e1
25f4eeb
7e297e1
25f4eeb
7e297e1
 
25f4eeb
7e297e1
25f4eeb
7e297e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e443228
7e297e1
 
 
 
 
 
 
4cfe952
7e297e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

import torch



torch.set_default_device("cpu")

# Load the 'microsoft/phi-2' model and tokenizer
model_phi2 = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
tokenizer_phi2 = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)

# Set up gRPC channel for NewsGuardian model
channel_tts = ClarifaiChannel.get_grpc_channel()
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS,)

# Streamlit app
st.title("NewsGuardian")

# Inserting logo
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTdA-MJ_SUCRgLs1prqudpMdaX4x-x10Zqlwp7cpzXWCMM9xjBAJYWdJsDlLoHBqNpj8qs&usqp=CAU")

# Function to get gRPC channel for NewsGuardian model
def get_tts_channel():
    channel_tts = ClarifaiChannel.get_grpc_channel()
    return channel_tts, channel_tts.metadata

# User input
model_type = st.selectbox("Select Model", ["NewsGuardian model", "DALL-E"])
raw_text = st.text_area("This news is real or fake?")
image_upload = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])

# Button to generate result
if st.button("NewsGuardian News Result"):
    if model_type == "NewsGuardian model":
        # Set up gRPC channel for NewsGuardian model
        channel_gpt4 = ClarifaiChannel.get_grpc_channel()
        stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4)
        metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),)
        userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)

        # Prepare the request for NewsGuardian model
        input_data_gpt4 = resources_pb2.Data()

        if raw_text:
            input_data_gpt4.text.raw = raw_text

        if image_upload is not None:
            image_bytes_gpt4 = image_upload.read()
            input_data_gpt4.image.base64 = image_bytes_gpt4

        post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_gpt4,
                model_id=MODEL_ID_GPT4,
                version_id=MODEL_VERSION_ID_GPT4,
                inputs=[resources_pb2.Input(data=input_data_gpt4)]
            ),
            metadata=metadata_gpt4  # Use metadata directly in the gRPC request
        )

        # Check if the request was successful for NewsGuardian model
        if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
            st.error(f"NewsGuardian model API request failed: {post_model_outputs_response_gpt4.status.description}")
        else:
            # Get the output for NewsGuardian model
            output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data

            # Display the result for NewsGuardian model
            if output_gpt4.HasField("image"):
                st.image(output_gpt4.image.base64, caption='Generated Image (NewsGuardian model)', use_column_width=True)
            elif output_gpt4.HasField("text"):
                # Display the text result
                st.text(output_gpt4.text.raw)

                # Convert text to speech and play the audio
                tts_input_data = resources_pb2.Data()
                tts_input_data.text.raw = output_gpt4.text.raw

                tts_response = stub_tts.PostModelOutputs(
                    service_pb2.PostModelOutputsRequest(
                        user_app_id=userDataObject_tts,
                        model_id=MODEL_ID_TTS,
                        version_id=MODEL_VERSION_ID_TTS,
                        inputs=[resources_pb2.Input(data=tts_input_data)]
                    ),
                    metadata=metadata_tts  # Use the same metadata for TTS
                )

                # Check if the TTS request was successful
                if tts_response.status.code == status_code_pb2.SUCCESS:
                    tts_output = tts_response.outputs[0].data
                    st.audio(tts_output.audio.base64, format='audio/wav')
                else:
                    st.error(f"NewsGuardian model API request failed: {tts_response.status.description}")

    elif model_type == "DALL-E":
        # Set up gRPC channel for DALL-E
        channel_dalle = ClarifaiChannel.get_grpc_channel()
        stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
        metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
        userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)

        # Prepare the request for DALL-E
        input_data_dalle = resources_pb2.Data()

        if raw_text:
            input_data_dalle.text.raw = raw_text

        post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_dalle,
                model_id=MODEL_ID_DALLE,
                version_id=MODEL_VERSION_ID_DALLE,
                inputs=[resources_pb2.Input(data=input_data_dalle)]
            ),
            metadata=metadata_dalle
        )

        # Check if the request was successful for DALL-E
        if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
            st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
        else:
            # Get the output for DALL-E
            output_dalle = post_model_outputs_response_dalle.outputs[0].data

            # Display the result for DALL-E
            if output_dalle.HasField("image"):
                st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
            elif output_dalle.HasField("text"):
                st.text(output_dalle.text.raw)

# Add the beautiful social media icon section
st.markdown("""
  <div align="center">
      <a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
        <a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />    
      <a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">  
        <img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>      
  </div>
  <hr>
""", unsafe_allow_html=True)