File size: 10,390 Bytes
7e297e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa70e5c
7e297e1
 
 
 
aa70e5c
7e297e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2

# Set your Clarifai credentials and model details for GPT-4 Vision
PAT_GPT4 = '3ca5bd8b0f2244eb8d0e4b2838fc3cf1'
USER_ID_GPT4 = 'openai'
APP_ID_GPT4 = 'chat-completion'
MODEL_ID_GPT4 = 'openai-gpt-4-vision'
MODEL_VERSION_ID_GPT4 = '266df29bc09843e0aee9b7bf723c03c2'

# Set your Clarifai credentials and model details for DALL-E
PAT_DALLE = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_DALLE = 'openai'
APP_ID_DALLE = 'dall-e'
MODEL_ID_DALLE = 'dall-e-3'
MODEL_VERSION_ID_DALLE = 'dc9dcb6ee67543cebc0b9a025861b868'



# Streamlit app
# Set your Clarifai credentials for Text-to-Speech (TTS)
PAT_TTS = 'bfdeb4029ef54d23a2e608b0aa4c00e4'
USER_ID_TTS = 'openai'
APP_ID_TTS = 'tts'
MODEL_ID_TTS = 'openai-tts-1'
MODEL_VERSION_ID_TTS = 'fff6ce1fd487457da95b79241ac6f02d'


# Set up gRPC channel for Text-to-Speech (TTS)
channel_tts = ClarifaiChannel.get_grpc_channel()
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS,)

# Streamlit app
st.title("Fake news detection")


# Inserting logo
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTdA-MJ_SUCRgLs1prqudpMdaX4x-x10Zqlwp7cpzXWCMM9xjBAJYWdJsDlLoHBqNpj8qs&usqp=CAU")
# Function to get gRPC channel for Text-to-Speech (TTS)
def get_tts_channel():
    channel_tts = ClarifaiChannel.get_grpc_channel()
    return channel_tts, channel_tts.metadata



# User input
model_type = st.selectbox("Select Model", ["Fake news detection model"])
raw_text = st.text_area("This news is real or fake?")
image_upload = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])

# Button to generate result
if st.button("Generate News Result"):
    if model_type == "GPT-4 Vision":
        # Set up gRPC channel for GPT-4 Vision
        channel_gpt4 = ClarifaiChannel.get_grpc_channel()
        stub_gpt4 = service_pb2_grpc.V2Stub(channel_gpt4)
        metadata_gpt4 = (('authorization', 'Key ' + PAT_GPT4),)
        userDataObject_gpt4 = resources_pb2.UserAppIDSet(user_id=USER_ID_GPT4, app_id=APP_ID_GPT4)

        # Prepare the request for GPT-4 Vision
        input_data_gpt4 = resources_pb2.Data()

        if raw_text:
            input_data_gpt4.text.raw = raw_text

        if image_upload is not None:
            image_bytes_gpt4 = image_upload.read()
            input_data_gpt4.image.base64 = image_bytes_gpt4

        post_model_outputs_response_gpt4 = stub_gpt4.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_gpt4,
                model_id=MODEL_ID_GPT4,
                version_id=MODEL_VERSION_ID_GPT4,
                inputs=[resources_pb2.Input(data=input_data_gpt4)]
            ),
            metadata=metadata_gpt4  # Use metadata directly in the gRPC request
        )

        # Check if the request was successful for GPT-4 Vision
        if post_model_outputs_response_gpt4.status.code != status_code_pb2.SUCCESS:
            st.error(f"GPT-4 Vision API request failed: {post_model_outputs_response_gpt4.status.description}")
        else:
            # Get the output for GPT-4 Vision
            output_gpt4 = post_model_outputs_response_gpt4.outputs[0].data

            # Display the result for GPT-4 Vision
            if output_gpt4.HasField("image"):
                st.image(output_gpt4.image.base64, caption='Generated Image (GPT-4 Vision)', use_column_width=True)
            elif output_gpt4.HasField("text"):
                # Display the text result
                st.text(output_gpt4.text.raw)

                # Convert text to speech and play the audio
                stub_tts = service_pb2_grpc.V2Stub(channel_gpt4)  # Use the same channel for TTS

                tts_input_data = resources_pb2.Data()
                tts_input_data.text.raw = output_gpt4.text.raw

                tts_response = stub_tts.PostModelOutputs(
                    service_pb2.PostModelOutputsRequest(
                        user_app_id=userDataObject_tts,
                        model_id=MODEL_ID_TTS,
                        version_id=MODEL_VERSION_ID_TTS,
                        inputs=[resources_pb2.Input(data=tts_input_data)]
                    ),
                    metadata=metadata_gpt4  # Use the same metadata for TTS
                )

                # Check if the TTS request was successful
                if tts_response.status.code == status_code_pb2.SUCCESS:
                    tts_output = tts_response.outputs[0].data
                    st.audio(tts_output.audio.base64, format='audio/wav')
                else:
                    st.error(f"Text-to-Speech (TTS) API request failed: {tts_response.status.description}")

    elif model_type == "DALL-E":
        # Set up gRPC channel for DALL-E
        channel_dalle = ClarifaiChannel.get_grpc_channel()
        stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
        metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
        userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)

        # Prepare the request for DALL-E
        input_data_dalle = resources_pb2.Data()

        if raw_text:
            input_data_dalle.text.raw = raw_text

        post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_dalle,
                model_id=MODEL_ID_DALLE,
                version_id=MODEL_VERSION_ID_DALLE,
                inputs=[resources_pb2.Input(data=input_data_dalle)]
            ),
            metadata=metadata_dalle
        )

        # Check if the request was successful for DALL-E
        if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
            st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
        else:
            # Get the output for DALL-E
            output_dalle = post_model_outputs_response_dalle.outputs[0].data

            # Display the result for DALL-E
            if output_dalle.HasField("image"):
                st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
            elif output_dalle.HasField("text"):
                st.text(output_dalle.text.raw)

    elif model_type == "Text-to-Speech (TTS)":
        # Set up gRPC channel for Text-to-Speech (TTS)
        channel_tts = ClarifaiChannel.get_grpc_channel()
        stub_tts = service_pb2_grpc.V2Stub(channel_tts)
        metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
        userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)

        # Prepare the request for Text-to-Speech (TTS)
        input_data_tts = resources_pb2.Data()

        if raw_text:
            input_data_tts.text.raw = raw_text

        post_model_outputs_response_tts = stub_tts.PostModelOutputs(
            service_pb2.PostModelOutputsRequest(
                user_app_id=userDataObject_tts,
                model_id=MODEL_ID_TTS,
                version_id=MODEL_VERSION_ID_TTS,
                inputs=[resources_pb2.Input(data=input_data_tts)]
            ),
            metadata=metadata_tts
        )

        # Check if the request was successful for Text-to-Speech (TTS)
        if post_model_outputs_response_tts.status.code != status_code_pb2.SUCCESS:
            st.error(f"Text-to-Speech (TTS) API request failed: {post_model_outputs_response_tts.status.description}")
        else:
            # Get the output for Text-to-Speech (TTS)
            output_tts = post_model_outputs_response_tts.outputs[0].data

            # Display the result for Text-to-Speech (TTS)
            if output_tts.HasField("text"):
                st.text(output_tts.text.raw)

            if output_tts.HasField("audio"):
                st.audio(output_tts.audio.base64, format='audio/wav')


# Add the beautiful social media icon section
st.markdown("""
  <div align="center">
      <a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
        <a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />    
      <a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
        <img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
      <img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
      <a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">  
        <img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>      
  </div>
  <hr>
""", unsafe_allow_html=True)