Spaces:
Sleeping
Sleeping
File size: 9,870 Bytes
4e838e8 7e297e1 4e838e8 7e297e1 4cfe952 7e297e1 4e838e8 7e297e1 8638438 7e297e1 e443228 4e838e8 7e297e1 e443228 4e838e8 7e297e1 4e838e8 8638438 25f4eeb 4e838e8 7e297e1 25f4eeb 4e838e8 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 25f4eeb 4e838e8 7e297e1 25f4eeb 4e838e8 7e297e1 25f4eeb 4e838e8 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 e443228 7e297e1 4e838e8 7e297e1 4e838e8 7e297e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
# GPT-4 credentials
PAT_GPT4 = "3ca5bd8b0f2244eb8d0e4b2838fc3cf1"
USER_ID_GPT4 = "openai"
APP_ID_GPT4 = "chat-completion"
MODEL_ID_GPT4 = "openai-gpt-4-vision"
MODEL_VERSION_ID_GPT4 = "266df29bc09843e0aee9b7bf723c03c2"
# DALL-E credentials
PAT_DALLE = "bfdeb4029ef54d23a2e608b0aa4c00e4"
USER_ID_DALLE = "openai"
APP_ID_DALLE = "dall-e"
MODEL_ID_DALLE = "dall-e-3"
MODEL_VERSION_ID_DALLE = "dc9dcb6ee67543cebc0b9a025861b868"
# TTS credentials
PAT_TTS = "bfdeb4029ef54d23a2e608b0aa4c00e4"
USER_ID_TTS = "openai"
APP_ID_TTS = "tts"
MODEL_ID_TTS = "openai-tts-1"
MODEL_VERSION_ID_TTS = "fff6ce1fd487457da95b79241ac6f02d"
# NewsGuardian model credentials
PAT_NEWSGUARDIAN = "your_news_guardian_pat"
USER_ID_NEWSGUARDIAN = "your_user_id"
APP_ID_NEWSGUARDIAN = "your_app_id"
MODEL_ID_NEWSGUARDIAN = "your_model_id"
MODEL_VERSION_ID_NEWSGUARDIAN = "your_model_version_id"
# Set up gRPC channel for NewsGuardian model
channel_tts = ClarifaiChannel.get_grpc_channel()
stub_tts = service_pb2_grpc.V2Stub(channel_tts)
metadata_tts = (('authorization', 'Key ' + PAT_TTS),)
userDataObject_tts = resources_pb2.UserAppIDSet(user_id=USER_ID_TTS, app_id=APP_ID_TTS)
# Streamlit app
st.title("NewsGuardian")
# Inserting logo
st.image("https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTdA-MJ_SUCRgLs1prqudpMdaX4x-x10Zqlwp7cpzXWCMM9xjBAJYWdJsDlLoHBqNpj8qs&usqp=CAU")
# Function to generate text using the "microsoft/phi-2" model
def generate_phi2_text(input_text):
inputs = tokenizer(input_text, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
generated_text = tokenizer.batch_decode(outputs)[0]
return generated_text
# User input
raw_text_phi2 = st.text_area("Enter text for phi-2 model")
# Button to generate result using "microsoft/phi-2" model
if st.button("NewsGuardian model Generated fake news with phi-2"):
if raw_text_phi2:
generated_text_phi2 = generate_phi2_text(raw_text_phi2)
st.text("NewsGuardian model Generated fake news with phi-2")
st.text(generated_text_phi2)
else:
st.warning("Please enter news phi-2 model")
# User input
model_type = st.selectbox("Select Model", ["NewsGuardian model", "DALL-E"])
raw_text_news_guardian = st.text_area("This news is real or fake?")
image_upload_news_guardian = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
# Button to generate result for NewsGuardian model
if st.button("NewsGuardian News Result"):
if model_type == "NewsGuardian model":
# Set up gRPC channel for NewsGuardian model
channel_news_guardian = ClarifaiChannel.get_grpc_channel()
stub_news_guardian = service_pb2_grpc.V2Stub(channel_news_guardian)
metadata_news_guardian = (('authorization', 'Key ' + PAT_NEWSGUARDIAN),)
userDataObject_news_guardian = resources_pb2.UserAppIDSet(user_id=USER_ID_NEWSGUARDIAN, app_id=APP_ID_NEWSGUARDIAN)
# Prepare the request for NewsGuardian model
input_data_news_guardian = resources_pb2.Data()
if raw_text_news_guardian:
input_data_news_guardian.text.raw = raw_text_news_guardian
if image_upload_news_guardian is not None:
image_bytes_news_guardian = image_upload_news_guardian.read()
input_data_news_guardian.image.base64 = image_bytes_news_guardian
post_model_outputs_response_news_guardian = stub_news_guardian.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject_news_guardian,
model_id=MODEL_ID_NEWSGUARDIAN,
version_id=MODEL_VERSION_ID_NEWSGUARDIAN,
inputs=[resources_pb2.Input(data=input_data_news_guardian)]
),
metadata=metadata_news_guardian # Use metadata directly in the gRPC request
)
# Check if the request was successful for NewsGuardian model
if post_model_outputs_response_news_guardian.status.code != status_code_pb2.SUCCESS:
st.error(f"NewsGuardian model API request failed: {post_model_outputs_response_news_guardian.status.description}")
else:
# Get the output for NewsGuardian model
output_news_guardian = post_model_outputs_response_news_guardian.outputs[0].data
# Display the result for NewsGuardian model
if output_news_guardian.HasField("image"):
st.image(output_news_guardian.image.base64, caption='Generated Image (NewsGuardian model)', use_column_width=True)
elif output_news_guardian.HasField("text"):
# Display the text result
st.text(output_news_guardian.text.raw)
# Convert text to speech and play the audio
tts_input_data = resources_pb2.Data()
tts_input_data.text.raw = output_news_guardian.text.raw
tts_response = stub_tts.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject_tts,
model_id=MODEL_ID_TTS,
version_id=MODEL_VERSION_ID_TTS,
inputs=[resources_pb2.Input(data=tts_input_data)]
),
metadata=metadata_tts # Use the same metadata for TTS
)
# Check if the TTS request was successful
if tts_response.status.code == status_code_pb2.SUCCESS:
tts_output = tts_response.outputs[0].data
st.audio(tts_output.audio.base64, format='audio/wav')
else:
st.error(f"TTS API request failed: {tts_response.status.description}")
elif model_type == "DALL-E":
# Set up gRPC channel for DALL-E
channel_dalle = ClarifaiChannel.get_grpc_channel()
stub_dalle = service_pb2_grpc.V2Stub(channel_dalle)
metadata_dalle = (('authorization', 'Key ' + PAT_DALLE),)
userDataObject_dalle = resources_pb2.UserAppIDSet(user_id=USER_ID_DALLE, app_id=APP_ID_DALLE)
# Prepare the request for DALL-E
input_data_dalle = resources_pb2.Data()
if raw_text_news_guardian:
input_data_dalle.text.raw = raw_text_news_guardian
post_model_outputs_response_dalle = stub_dalle.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject_dalle,
model_id=MODEL_ID_DALLE,
version_id=MODEL_VERSION_ID_DALLE,
inputs=[resources_pb2.Input(data=input_data_dalle)]
),
metadata=metadata_dalle
)
# Check if the request was successful for DALL-E
if post_model_outputs_response_dalle.status.code != status_code_pb2.SUCCESS:
st.error(f"DALL-E API request failed: {post_model_outputs_response_dalle.status.description}")
else:
# Get the output for DALL-E
output_dalle = post_model_outputs_response_dalle.outputs[0].data
# Display the result for DALL-E
if output_dalle.HasField("image"):
st.image(output_dalle.image.base64, caption='Generated Image (DALL-E)', use_column_width=True)
elif output_dalle.HasField("text"):
st.text(output_dalle.text.raw)
# Add the beautiful social media icon section
st.markdown("""
<div align="center">
<a href="https://github.com/pyresearch/pyresearch" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226594737-c21e2dda-9cc6-42ef-b4e7-a685fea4a21d.png" width="2%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/pyresearch/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226596446-746ffdd0-a47e-4452-84e3-bf11ec2aa26a.png" width="2%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
<a href="https://twitter.com/Noorkhokhar10" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226599162-9b11194e-4998-440a-ba94-c8a5e1cdc676.png" width="2%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
<a href="https://www.youtube.com/@Pyresearch" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226599904-7d5cc5c0-89d2-4d1e-891e-19bee1951744.png" width="2%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
<a href="https://www.facebook.com/Pyresearch" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226600380-a87a9142-e8e0-4ec9-bf2c-dd6e9da2f05a.png" width="2%" alt="" /></a>
<img src="https://user-images.githubusercontent.com/34125851/226595799-160b0da3-c9e0-4562-8544-5f20460f7cc9.png" width="2%" alt="" />
<a href="https://www.instagram.com/pyresearch/" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/34125851/226601355-ffe0b597-9840-4e10-bbef-43d6c74b5a9e.png" width="2%" alt="" /></a>
</div>
<hr>
""", unsafe_allow_html=True)
|