File size: 871 Bytes
df0d9bc
2945767
 
df0d9bc
4fd1232
 
 
 
 
df0d9bc
2945767
df0d9bc
 
 
 
 
 
2945767
df0d9bc
 
 
4fd1232
f3cbcc0
4fd1232
f3cbcc0
4fd1232
f3cbcc0
4fd1232
f3cbcc0
8dd947d
f3cbcc0
2945767
df0d9bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
import gradio as gr

urls = [
    "./assets/DETR-big-picture.png",
    "./assets/DETR-CNN-backbone.png",
    "./assets/DETR-encoder.png",
    "./assets/DETR-decoder.png",
    "./assets/DETR-prediction-heads.png",
]

# Add your image files here
img1 = urls[0]
img2 = urls[1]
img3 = urls[2]
img4 = urls[3]
img5 = urls[4]

with gr.Blocks() as demo:
    gr.Markdown("Select a tab to display a corresponding image.")
    with gr.Tabs() as tabs:
        with gr.Tab("DETR Architecture"):
            image1 = gr.Image(value=img1)
        with gr.Tab("CNN Backbone"):
            image2 = gr.Image(value=img2)
        with gr.Tab("Encoder"):
            image3 = gr.Image(value=img3)
        with gr.Tab("Decoder"):
            image4 = gr.Image(value=img4)
        with gr.Tab("FFN Prediction Heads"):
            image5 = gr.Image(value=img5)

demo.launch()