|
import torch |
|
import gradio as gr |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import transformers |
|
|
|
|
|
adapters_name = "1littlecoder/mistral-7b-mj-finetuned" |
|
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded" |
|
device = "cuda" |
|
|
|
bnb_config = transformers.BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
load_in_4bit=True, |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=bnb_config, |
|
device_map='auto' |
|
) |
|
model = PeftModel.from_pretrained(model, adapters_name) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.bos_token_id = 1 |
|
|
|
stop_token_ids = [0] |
|
|
|
print(f"Successfully loaded the model {model_name} into memory") |
|
|
|
def remove_substring(original_string, substring_to_remove): |
|
|
|
result_string = original_string.replace(substring_to_remove, '') |
|
return result_string |
|
|
|
def list_to_string(input_list, delimiter=" "): |
|
""" |
|
Convert a list to a string, joining elements with the specified delimiter. |
|
|
|
:param input_list: The list to convert to a string. |
|
:param delimiter: The separator to use between elements (default is a space). |
|
:return: A string composed of list elements separated by the delimiter. |
|
""" |
|
return delimiter.join(map(str, input_list)) |
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def generate( |
|
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
formatted_prompt = format_prompt(prompt, history) |
|
|
|
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False) |
|
model_input = encoded |
|
model.to(device) |
|
generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True) |
|
|
|
|
|
list_output = tokenizer.batch_decode(generated_ids) |
|
string_output = list_to_string(list_output) |
|
possible_output = remove_substring(string_output,formatted_prompt) |
|
|
|
return possible_output |
|
|
|
|
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.9, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=256, |
|
minimum=0, |
|
maximum=1048, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.2, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
css = """ |
|
#mkd { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") |
|
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") |
|
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") |
|
gr.ChatInterface( |
|
generate, |
|
additional_inputs=additional_inputs, |
|
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] |
|
) |
|
|
|
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) |