Spaces:
Running
Running
Fixed issue with error due to max token limit on generic chatbot
Browse files- src/generic_bot copy.py +165 -0
- src/generic_bot.py +30 -1
src/generic_bot copy.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from typing import Annotated, List, Tuple
|
6 |
+
from typing_extensions import TypedDict
|
7 |
+
from langchain.tools import tool, BaseTool
|
8 |
+
from langchain.schema import Document
|
9 |
+
from langgraph.graph import StateGraph, START, END, MessagesState
|
10 |
+
from langgraph.graph.message import add_messages
|
11 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
12 |
+
from langgraph.checkpoint.memory import MemorySaver
|
13 |
+
from langchain_openai import ChatOpenAI
|
14 |
+
from langchain_core.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate
|
15 |
+
# from langchain.schema import SystemMessage, HumanMessage, AIMessage, ToolMessage
|
16 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage, SystemMessage
|
17 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
18 |
+
import json
|
19 |
+
sys.path.append(os.path.abspath('..'))
|
20 |
+
|
21 |
+
|
22 |
+
import src.utils.qdrant_manager as qm
|
23 |
+
import prompts.system_prompts as sp
|
24 |
+
|
25 |
+
load_dotenv('/Users/nadaa/Documents/code/py_innovations/srf_chatbot_v2/.env')
|
26 |
+
|
27 |
+
|
28 |
+
class ToolManager:
|
29 |
+
def __init__(self, collection_name="openai_large_chunks_1000char"):
|
30 |
+
self.tools = []
|
31 |
+
self.qdrant = qm.QdrantManager(collection_name=collection_name)
|
32 |
+
self.vectorstore = self.qdrant.get_vectorstore()
|
33 |
+
self.add_tools()
|
34 |
+
|
35 |
+
def get_tools(self):
|
36 |
+
return self.tools
|
37 |
+
|
38 |
+
def add_tools(self):
|
39 |
+
@tool
|
40 |
+
def vector_search(query: str, k: int = 15) -> list[Document]:
|
41 |
+
"""Useful for simple queries. This tool will search a vector database for passages from the teachings of Paramhansa Yogananda and other publications from the Self Realization Fellowship (SRF).
|
42 |
+
The user has the option to specify the number of passages they want the search to return, otherwise the number of passages will be set to the default value."""
|
43 |
+
retriever = self.vectorstore.as_retriever(search_kwargs={"k": k})
|
44 |
+
documents = retriever.invoke(query)
|
45 |
+
return documents
|
46 |
+
|
47 |
+
@tool
|
48 |
+
def multiple_query_vector_search(query: str, k: int = 15) -> list[Document]:
|
49 |
+
"""Useful when the user's query is vague, complex, or involves multiple concepts.
|
50 |
+
This tool will write multiple versions of the user's query and search the vector database for relevant passages.
|
51 |
+
Use this tool when the user asks for an in depth answer to their question."""
|
52 |
+
|
53 |
+
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.5)
|
54 |
+
retriever_from_llm = MultiQueryRetriever.from_llm(retriever=self.vectorstore.as_retriever(), llm=llm)
|
55 |
+
documents = retriever_from_llm.invoke(query)
|
56 |
+
return documents
|
57 |
+
|
58 |
+
self.tools.append(vector_search)
|
59 |
+
self.tools.append(multiple_query_vector_search)
|
60 |
+
|
61 |
+
class BasicToolNode:
|
62 |
+
"""A node that runs the tools requested in the last AIMessage."""
|
63 |
+
|
64 |
+
def __init__(self, tools: list) -> None:
|
65 |
+
self.tools_by_name = {tool.name: tool for tool in tools}
|
66 |
+
|
67 |
+
def __call__(self, inputs: dict):
|
68 |
+
if messages := inputs.get("messages", []):
|
69 |
+
message = messages[-1]
|
70 |
+
else:
|
71 |
+
raise ValueError("No message found in input")
|
72 |
+
outputs = []
|
73 |
+
documents = []
|
74 |
+
for tool_call in message.tool_calls:
|
75 |
+
tool_result = self.tools_by_name[tool_call["name"]].invoke(
|
76 |
+
tool_call["args"]
|
77 |
+
)
|
78 |
+
outputs.append(
|
79 |
+
ToolMessage(
|
80 |
+
content=str(tool_result),
|
81 |
+
name=tool_call["name"],
|
82 |
+
tool_call_id=tool_call["id"],
|
83 |
+
)
|
84 |
+
)
|
85 |
+
documents += tool_result
|
86 |
+
|
87 |
+
return {"messages": outputs, "documents": documents}
|
88 |
+
|
89 |
+
class AgentState(TypedDict):
|
90 |
+
|
91 |
+
messages: Annotated[list, add_messages]
|
92 |
+
documents: list[Document]
|
93 |
+
system_message: list[SystemMessage]
|
94 |
+
system_message_dropdown: list[str]
|
95 |
+
|
96 |
+
class GenericChatbot:
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
model: str = 'gpt-4o-mini',
|
100 |
+
temperature: float = 0,
|
101 |
+
max_messages: int = 10,
|
102 |
+
):
|
103 |
+
|
104 |
+
self.llm = ChatOpenAI(model=model, temperature=temperature)
|
105 |
+
self.tools = ToolManager().get_tools()
|
106 |
+
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
107 |
+
self.max_messages = max_messages
|
108 |
+
# Build the graph
|
109 |
+
self.graph = self.build_graph()
|
110 |
+
# Get the configurable
|
111 |
+
self.config = self.get_configurable()
|
112 |
+
|
113 |
+
|
114 |
+
def get_configurable(self):
|
115 |
+
# This thread id is used to keep track of the chatbot's conversation
|
116 |
+
self.thread_id = str(uuid.uuid4())
|
117 |
+
return {"configurable": {"thread_id": self.thread_id}}
|
118 |
+
|
119 |
+
|
120 |
+
# Add the system message onto the llm
|
121 |
+
## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
|
122 |
+
def chatbot(self, state: AgentState):
|
123 |
+
messages = state["messages"]
|
124 |
+
# Check if conversation is too long
|
125 |
+
if len(messages) > self.max_messages:
|
126 |
+
# Keep only the system message and the most recent human message
|
127 |
+
messages = messages[-1]
|
128 |
+
|
129 |
+
# Add a message to inform the user
|
130 |
+
# messages.append(
|
131 |
+
# AIMessage(content="I notice our conversation has gotten quite long. Let's start fresh while keeping your latest question in mind.")
|
132 |
+
# )
|
133 |
+
|
134 |
+
return {"messages": [self.llm_with_tools.invoke(messages)]}
|
135 |
+
|
136 |
+
def build_graph(self):
|
137 |
+
# Add chatbot state
|
138 |
+
graph_builder = StateGraph(AgentState)
|
139 |
+
|
140 |
+
# Add nodes
|
141 |
+
tool_node = BasicToolNode(tools=self.tools)
|
142 |
+
# tool_node = ToolNode(self.tools)
|
143 |
+
graph_builder.add_node("tools", tool_node)
|
144 |
+
graph_builder.add_node("chatbot", self.chatbot)
|
145 |
+
|
146 |
+
# Add a conditional edge wherein the chatbot can decide whether or not to go to the tools
|
147 |
+
graph_builder.add_conditional_edges(
|
148 |
+
"chatbot",
|
149 |
+
tools_condition,
|
150 |
+
)
|
151 |
+
|
152 |
+
# Add fixed edges
|
153 |
+
graph_builder.add_edge(START, "chatbot")
|
154 |
+
graph_builder.add_edge("tools", "chatbot")
|
155 |
+
|
156 |
+
# Instantiate the memory saver
|
157 |
+
memory = MemorySaver()
|
158 |
+
|
159 |
+
# Compile the graph
|
160 |
+
return graph_builder.compile(checkpointer=memory)
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
src/generic_bot.py
CHANGED
@@ -98,12 +98,13 @@ class GenericChatbot:
|
|
98 |
self,
|
99 |
model: str = 'gpt-4o-mini',
|
100 |
temperature: float = 0,
|
|
|
101 |
):
|
102 |
|
103 |
self.llm = ChatOpenAI(model=model, temperature=temperature)
|
104 |
self.tools = ToolManager().get_tools()
|
105 |
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
106 |
-
|
107 |
# Build the graph
|
108 |
self.graph = self.build_graph()
|
109 |
# Get the configurable
|
@@ -120,6 +121,34 @@ class GenericChatbot:
|
|
120 |
## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
|
121 |
def chatbot(self, state: AgentState):
|
122 |
messages = state["messages"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
return {"messages": [self.llm_with_tools.invoke(messages)]}
|
124 |
|
125 |
def build_graph(self):
|
|
|
98 |
self,
|
99 |
model: str = 'gpt-4o-mini',
|
100 |
temperature: float = 0,
|
101 |
+
max_messages: int = 10,
|
102 |
):
|
103 |
|
104 |
self.llm = ChatOpenAI(model=model, temperature=temperature)
|
105 |
self.tools = ToolManager().get_tools()
|
106 |
self.llm_with_tools = self.llm.bind_tools(self.tools)
|
107 |
+
self.max_messages = max_messages
|
108 |
# Build the graph
|
109 |
self.graph = self.build_graph()
|
110 |
# Get the configurable
|
|
|
121 |
## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
|
122 |
def chatbot(self, state: AgentState):
|
123 |
messages = state["messages"]
|
124 |
+
|
125 |
+
# Calculate total tokens in messages
|
126 |
+
total_tokens = 0
|
127 |
+
for message in messages:
|
128 |
+
# Rough estimate: 4 chars = 1 token
|
129 |
+
total_tokens += len(str(message.content)) // 4
|
130 |
+
|
131 |
+
# If over 100k tokens, keep only essential messages
|
132 |
+
if total_tokens > 100000:
|
133 |
+
# Always keep system message if present
|
134 |
+
new_messages = []
|
135 |
+
if messages and isinstance(messages[0], SystemMessage):
|
136 |
+
new_messages.append(messages[0])
|
137 |
+
|
138 |
+
# Add the most recent messages that fit under token limit
|
139 |
+
for message in reversed(messages):
|
140 |
+
message_tokens = len(str(message.content)) // 4
|
141 |
+
if total_tokens - message_tokens > 100000:
|
142 |
+
total_tokens -= message_tokens
|
143 |
+
continue
|
144 |
+
new_messages.insert(1 if len(new_messages) > 0 else 0, message)
|
145 |
+
|
146 |
+
messages = new_messages
|
147 |
+
# Inform user about truncation
|
148 |
+
messages.append(
|
149 |
+
AIMessage(content="I notice our conversation has gotten quite long. I've kept the most recent and relevant parts to ensure we can continue effectively.")
|
150 |
+
)
|
151 |
+
|
152 |
return {"messages": [self.llm_with_tools.invoke(messages)]}
|
153 |
|
154 |
def build_graph(self):
|