nadaaaita commited on
Commit
2d3c1eb
·
1 Parent(s): 5d0e1a5

Fixed issue with error due to max token limit on generic chatbot

Browse files
Files changed (2) hide show
  1. src/generic_bot copy.py +165 -0
  2. src/generic_bot.py +30 -1
src/generic_bot copy.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ import uuid
4
+ from dotenv import load_dotenv
5
+ from typing import Annotated, List, Tuple
6
+ from typing_extensions import TypedDict
7
+ from langchain.tools import tool, BaseTool
8
+ from langchain.schema import Document
9
+ from langgraph.graph import StateGraph, START, END, MessagesState
10
+ from langgraph.graph.message import add_messages
11
+ from langgraph.prebuilt import ToolNode, tools_condition
12
+ from langgraph.checkpoint.memory import MemorySaver
13
+ from langchain_openai import ChatOpenAI
14
+ from langchain_core.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate
15
+ # from langchain.schema import SystemMessage, HumanMessage, AIMessage, ToolMessage
16
+ from langchain_core.messages import HumanMessage, AIMessage, ToolMessage, SystemMessage
17
+ from langchain.retrievers.multi_query import MultiQueryRetriever
18
+ import json
19
+ sys.path.append(os.path.abspath('..'))
20
+
21
+
22
+ import src.utils.qdrant_manager as qm
23
+ import prompts.system_prompts as sp
24
+
25
+ load_dotenv('/Users/nadaa/Documents/code/py_innovations/srf_chatbot_v2/.env')
26
+
27
+
28
+ class ToolManager:
29
+ def __init__(self, collection_name="openai_large_chunks_1000char"):
30
+ self.tools = []
31
+ self.qdrant = qm.QdrantManager(collection_name=collection_name)
32
+ self.vectorstore = self.qdrant.get_vectorstore()
33
+ self.add_tools()
34
+
35
+ def get_tools(self):
36
+ return self.tools
37
+
38
+ def add_tools(self):
39
+ @tool
40
+ def vector_search(query: str, k: int = 15) -> list[Document]:
41
+ """Useful for simple queries. This tool will search a vector database for passages from the teachings of Paramhansa Yogananda and other publications from the Self Realization Fellowship (SRF).
42
+ The user has the option to specify the number of passages they want the search to return, otherwise the number of passages will be set to the default value."""
43
+ retriever = self.vectorstore.as_retriever(search_kwargs={"k": k})
44
+ documents = retriever.invoke(query)
45
+ return documents
46
+
47
+ @tool
48
+ def multiple_query_vector_search(query: str, k: int = 15) -> list[Document]:
49
+ """Useful when the user's query is vague, complex, or involves multiple concepts.
50
+ This tool will write multiple versions of the user's query and search the vector database for relevant passages.
51
+ Use this tool when the user asks for an in depth answer to their question."""
52
+
53
+ llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.5)
54
+ retriever_from_llm = MultiQueryRetriever.from_llm(retriever=self.vectorstore.as_retriever(), llm=llm)
55
+ documents = retriever_from_llm.invoke(query)
56
+ return documents
57
+
58
+ self.tools.append(vector_search)
59
+ self.tools.append(multiple_query_vector_search)
60
+
61
+ class BasicToolNode:
62
+ """A node that runs the tools requested in the last AIMessage."""
63
+
64
+ def __init__(self, tools: list) -> None:
65
+ self.tools_by_name = {tool.name: tool for tool in tools}
66
+
67
+ def __call__(self, inputs: dict):
68
+ if messages := inputs.get("messages", []):
69
+ message = messages[-1]
70
+ else:
71
+ raise ValueError("No message found in input")
72
+ outputs = []
73
+ documents = []
74
+ for tool_call in message.tool_calls:
75
+ tool_result = self.tools_by_name[tool_call["name"]].invoke(
76
+ tool_call["args"]
77
+ )
78
+ outputs.append(
79
+ ToolMessage(
80
+ content=str(tool_result),
81
+ name=tool_call["name"],
82
+ tool_call_id=tool_call["id"],
83
+ )
84
+ )
85
+ documents += tool_result
86
+
87
+ return {"messages": outputs, "documents": documents}
88
+
89
+ class AgentState(TypedDict):
90
+
91
+ messages: Annotated[list, add_messages]
92
+ documents: list[Document]
93
+ system_message: list[SystemMessage]
94
+ system_message_dropdown: list[str]
95
+
96
+ class GenericChatbot:
97
+ def __init__(
98
+ self,
99
+ model: str = 'gpt-4o-mini',
100
+ temperature: float = 0,
101
+ max_messages: int = 10,
102
+ ):
103
+
104
+ self.llm = ChatOpenAI(model=model, temperature=temperature)
105
+ self.tools = ToolManager().get_tools()
106
+ self.llm_with_tools = self.llm.bind_tools(self.tools)
107
+ self.max_messages = max_messages
108
+ # Build the graph
109
+ self.graph = self.build_graph()
110
+ # Get the configurable
111
+ self.config = self.get_configurable()
112
+
113
+
114
+ def get_configurable(self):
115
+ # This thread id is used to keep track of the chatbot's conversation
116
+ self.thread_id = str(uuid.uuid4())
117
+ return {"configurable": {"thread_id": self.thread_id}}
118
+
119
+
120
+ # Add the system message onto the llm
121
+ ## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
122
+ def chatbot(self, state: AgentState):
123
+ messages = state["messages"]
124
+ # Check if conversation is too long
125
+ if len(messages) > self.max_messages:
126
+ # Keep only the system message and the most recent human message
127
+ messages = messages[-1]
128
+
129
+ # Add a message to inform the user
130
+ # messages.append(
131
+ # AIMessage(content="I notice our conversation has gotten quite long. Let's start fresh while keeping your latest question in mind.")
132
+ # )
133
+
134
+ return {"messages": [self.llm_with_tools.invoke(messages)]}
135
+
136
+ def build_graph(self):
137
+ # Add chatbot state
138
+ graph_builder = StateGraph(AgentState)
139
+
140
+ # Add nodes
141
+ tool_node = BasicToolNode(tools=self.tools)
142
+ # tool_node = ToolNode(self.tools)
143
+ graph_builder.add_node("tools", tool_node)
144
+ graph_builder.add_node("chatbot", self.chatbot)
145
+
146
+ # Add a conditional edge wherein the chatbot can decide whether or not to go to the tools
147
+ graph_builder.add_conditional_edges(
148
+ "chatbot",
149
+ tools_condition,
150
+ )
151
+
152
+ # Add fixed edges
153
+ graph_builder.add_edge(START, "chatbot")
154
+ graph_builder.add_edge("tools", "chatbot")
155
+
156
+ # Instantiate the memory saver
157
+ memory = MemorySaver()
158
+
159
+ # Compile the graph
160
+ return graph_builder.compile(checkpointer=memory)
161
+
162
+
163
+
164
+
165
+
src/generic_bot.py CHANGED
@@ -98,12 +98,13 @@ class GenericChatbot:
98
  self,
99
  model: str = 'gpt-4o-mini',
100
  temperature: float = 0,
 
101
  ):
102
 
103
  self.llm = ChatOpenAI(model=model, temperature=temperature)
104
  self.tools = ToolManager().get_tools()
105
  self.llm_with_tools = self.llm.bind_tools(self.tools)
106
-
107
  # Build the graph
108
  self.graph = self.build_graph()
109
  # Get the configurable
@@ -120,6 +121,34 @@ class GenericChatbot:
120
  ## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
121
  def chatbot(self, state: AgentState):
122
  messages = state["messages"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  return {"messages": [self.llm_with_tools.invoke(messages)]}
124
 
125
  def build_graph(self):
 
98
  self,
99
  model: str = 'gpt-4o-mini',
100
  temperature: float = 0,
101
+ max_messages: int = 10,
102
  ):
103
 
104
  self.llm = ChatOpenAI(model=model, temperature=temperature)
105
  self.tools = ToolManager().get_tools()
106
  self.llm_with_tools = self.llm.bind_tools(self.tools)
107
+ self.max_messages = max_messages
108
  # Build the graph
109
  self.graph = self.build_graph()
110
  # Get the configurable
 
121
  ## THIS SHOULD BE REFACTORED SO THAT THE STATE ALWAYS HAS THE DEFINITIVE SYSTEM MESSAGE THAT SHOULD BE IN USE
122
  def chatbot(self, state: AgentState):
123
  messages = state["messages"]
124
+
125
+ # Calculate total tokens in messages
126
+ total_tokens = 0
127
+ for message in messages:
128
+ # Rough estimate: 4 chars = 1 token
129
+ total_tokens += len(str(message.content)) // 4
130
+
131
+ # If over 100k tokens, keep only essential messages
132
+ if total_tokens > 100000:
133
+ # Always keep system message if present
134
+ new_messages = []
135
+ if messages and isinstance(messages[0], SystemMessage):
136
+ new_messages.append(messages[0])
137
+
138
+ # Add the most recent messages that fit under token limit
139
+ for message in reversed(messages):
140
+ message_tokens = len(str(message.content)) // 4
141
+ if total_tokens - message_tokens > 100000:
142
+ total_tokens -= message_tokens
143
+ continue
144
+ new_messages.insert(1 if len(new_messages) > 0 else 0, message)
145
+
146
+ messages = new_messages
147
+ # Inform user about truncation
148
+ messages.append(
149
+ AIMessage(content="I notice our conversation has gotten quite long. I've kept the most recent and relevant parts to ensure we can continue effectively.")
150
+ )
151
+
152
  return {"messages": [self.llm_with_tools.invoke(messages)]}
153
 
154
  def build_graph(self):