File size: 13,628 Bytes
dfbf21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7864\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "\n",
    "# Define some pre-written templates\n",
    "templates = {\n",
    "    \"Friendly Chatbot\": \"You are a helpful, friendly chatbot that engages in light-hearted conversations.\",\n",
    "    \"Technical Assistant\": \"You are a technical assistant specialized in answering questions related to Python programming.\",\n",
    "    \"Nutrition Advisor\": \"You provide evidence-based advice on nutrition and healthy eating habits.\",\n",
    "}\n",
    "\n",
    "# Chatbot logic: Takes system instructions and user query, returns a response\n",
    "def chatbot_response(system_instructions, user_query):\n",
    "    if \"friendly\" in system_instructions.lower():\n",
    "        return f\"Friendly Chatbot says: Hi there! 😊 How can I assist you today?\"\n",
    "    elif \"technical\" in system_instructions.lower():\n",
    "        return f\"Technical Assistant says: Sure! Here's some information on Python: {user_query}\"\n",
    "    elif \"nutrition\" in system_instructions.lower():\n",
    "        return f\"Nutrition Advisor says: Here's some advice about healthy eating: {user_query}\"\n",
    "    else:\n",
    "        return f\"Custom Chatbot says: {user_query}\"\n",
    "\n",
    "# Function to update the interface when a selection is made from the dropdown\n",
    "def update_interface(template_name, custom_instructions):\n",
    "    if template_name == \"Custom Instructions\":\n",
    "        return gr.update(visible=True), gr.update(visible(False))\n",
    "    else:\n",
    "        template_content = templates.get(template_name, \"\")\n",
    "        return gr.update(visible=False), gr.update(visible=True, value=template_content)\n",
    "\n",
    "# Chatbot conversation function\n",
    "def chatbot_conversation(system_instructions, chat_history, user_query):\n",
    "    response = chatbot_response(system_instructions, user_query)\n",
    "    chat_history.append((user_query, response))\n",
    "    return chat_history, \"\"\n",
    "\n",
    "# Build the Gradio interface\n",
    "with gr.Blocks() as demo:\n",
    "    \n",
    "    # Add the title and description\n",
    "    gr.Markdown(\"# **SRF Innovation Labs - AI Chatbot Use Case Explorer**\")\n",
    "    gr.Markdown(\"\"\"\n",
    "    Welcome to the SRF Innovation Labs AI Chatbot Use Case Explorer! \n",
    "    This tool allows you to experiment with different system prompts, \n",
    "    giving you control over how the chatbot behaves. You can either use pre-defined templates or write your own custom instructions.\n",
    "    \n",
    "    Additionally, the chatbot has access to a vector database where it can look up and retrieve learnings for various queries. \n",
    "    This makes it an excellent platform for exploring potential AI use cases in real-time.\n",
    "    \"\"\")\n",
    "\n",
    "    # Section to select system instructions from dropdown\n",
    "    gr.Markdown(\"## **Chatbot Setup**\")\n",
    "\n",
    "    # Dropdown for selecting a pre-written template or custom instructions\n",
    "    template_name = gr.Dropdown(choices=[\"Custom Instructions\"] + list(templates.keys()), label=\"Choose Instructions\", value=\"Friendly Chatbot\")\n",
    "    \n",
    "    # Textbox for custom chatbot instructions (only shown when \"Custom Instructions\" is selected)\n",
    "    custom_instructions = gr.Textbox(label=\"Custom Instructions\", visible=False, placeholder=\"Write your own instructions here...\")\n",
    "    \n",
    "    # Output field to display the selected pre-written template (not shown when Custom Instructions is selected)\n",
    "    template_display = gr.Textbox(label=\"Template Content\", interactive=False, visible=True)\n",
    "    \n",
    "    # Section for chat interface\n",
    "    gr.Markdown(\"## **Chatbot Interaction**\")\n",
    "\n",
    "    # Chatbot interface with chat history\n",
    "    chatbot = gr.Chatbot(label=\"Chatbot Conversation\")\n",
    "    user_query = gr.Textbox(label=\"Your Query\", placeholder=\"Ask a question or say something to the chatbot...\")\n",
    "\n",
    "    # Button to submit the query\n",
    "    submit_button = gr.Button(\"Send\")\n",
    "\n",
    "    # Update logic to control the display based on the dropdown selection\n",
    "    template_name.change(fn=update_interface, \n",
    "                         inputs=[template_name, custom_instructions], \n",
    "                         outputs=[custom_instructions, template_display])\n",
    "\n",
    "    # Chatbot interaction logic\n",
    "    submit_button.click(fn=chatbot_conversation, \n",
    "                        inputs=[custom_instructions if template_name == \"Custom Instructions\" else template_display, chatbot, user_query], \n",
    "                        outputs=[chatbot, user_query])\n",
    "\n",
    "# Launch the app\n",
    "demo.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7865\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7865/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "\n",
    "# Define some pre-written templates for Tab 1\n",
    "templates = {\n",
    "    \"Friendly Chatbot\": \"You are a helpful, friendly chatbot that engages in light-hearted conversations.\",\n",
    "    \"Technical Assistant\": \"You are a technical assistant specialized in answering questions related to Python programming.\",\n",
    "    \"Nutrition Advisor\": \"You provide evidence-based advice on nutrition and healthy eating habits.\",\n",
    "}\n",
    "\n",
    "# Define some agentic workflows for Tab 2\n",
    "agentic_workflows = {\n",
    "    \"Blog Post Generator\": \"This agent is designed to help generate a blog post based on user input.\",\n",
    "    \"Document Summarizer\": \"This agent summarizes long documents by extracting key points.\",\n",
    "    \"Task Manager\": \"This agent helps you organize tasks and provides step-by-step guidance.\"\n",
    "}\n",
    "\n",
    "# Chatbot logic for custom instructions or pre-written templates\n",
    "def chatbot_response(system_instructions, user_query):\n",
    "    if \"friendly\" in system_instructions.lower():\n",
    "        return f\"Friendly Chatbot says: Hi there! 😊 How can I assist you today?\"\n",
    "    elif \"technical\" in system_instructions.lower():\n",
    "        return f\"Technical Assistant says: Sure! Here's some information on Python: {user_query}\"\n",
    "    elif \"nutrition\" in system_instructions.lower():\n",
    "        return f\"Nutrition Advisor says: Here's some advice about healthy eating: {user_query}\"\n",
    "    else:\n",
    "        return f\"Custom Chatbot says: {user_query}\"\n",
    "\n",
    "# Chatbot conversation function\n",
    "def chatbot_conversation(system_instructions, chat_history, user_query):\n",
    "    response = chatbot_response(system_instructions, user_query)\n",
    "    chat_history.append((user_query, response))\n",
    "    return chat_history, \"\"\n",
    "\n",
    "# Chatbot conversation for predefined agentic workflows\n",
    "def agentic_chatbot_conversation(workflow_instructions, chat_history, user_query):\n",
    "    response = f\"Agent Workflow ({workflow_instructions}) says: {user_query}\"\n",
    "    chat_history.append((user_query, response))\n",
    "    return chat_history, \"\"\n",
    "\n",
    "# Function to update the interface when a selection is made from the dropdown (Tab 1)\n",
    "def update_interface(template_name, custom_instructions):\n",
    "    if template_name == \"Custom Instructions\":\n",
    "        return gr.update(visible=True), gr.update(visible=False)\n",
    "    else:\n",
    "        template_content = templates.get(template_name, \"\")\n",
    "        return gr.update(visible=False), gr.update(visible=True, value=template_content)\n",
    "\n",
    "# Build the Gradio interface with Tabs\n",
    "with gr.Blocks() as demo:\n",
    "    \n",
    "    # Add Tabs\n",
    "    with gr.Tabs():\n",
    "        \n",
    "        # Tab 1: Custom Instructions or Pre-Written Templates\n",
    "        with gr.Tab(\"Custom Instructions Chatbot\"):\n",
    "            gr.Markdown(\"# **SRF Innovation Labs - AI Chatbot Use Case Explorer**\")\n",
    "            gr.Markdown(\"\"\"\n",
    "            This tool allows you to experiment with different system prompts, \n",
    "            giving you control over how the chatbot behaves. You can either use pre-defined templates or write your own custom instructions.\n",
    "            \"\"\")\n",
    "\n",
    "            # Section to select system instructions from dropdown\n",
    "            gr.Markdown(\"## **Chatbot Setup**\")\n",
    "            template_name = gr.Dropdown(choices=[\"Custom Instructions\"] + list(templates.keys()), label=\"Choose Instructions\", value=\"Friendly Chatbot\")\n",
    "            custom_instructions = gr.Textbox(label=\"Custom Instructions\", visible=False, placeholder=\"Write your own instructions here...\")\n",
    "            template_display = gr.Textbox(label=\"Template Content\", interactive=False, visible=True)\n",
    "\n",
    "            # Chatbot interface\n",
    "            gr.Markdown(\"## **Chatbot Interaction**\")\n",
    "            chatbot = gr.Chatbot(label=\"Chatbot Conversation\")\n",
    "            user_query = gr.Textbox(label=\"Your Query\", placeholder=\"Ask a question or say something to the chatbot...\")\n",
    "            submit_button = gr.Button(\"Send\")\n",
    "\n",
    "            # Update logic for Tab 1\n",
    "            template_name.change(fn=update_interface, inputs=[template_name, custom_instructions], outputs=[custom_instructions, template_display])\n",
    "            submit_button.click(fn=chatbot_conversation, inputs=[custom_instructions if template_name == \"Custom Instructions\" else template_display, chatbot, user_query], outputs=[chatbot, user_query])\n",
    "\n",
    "        # Tab 2: Predefined Agentic Workflows\n",
    "        with gr.Tab(\"Agentic Workflow Chatbots\"):\n",
    "            gr.Markdown(\"# **Agentic Workflow Explorer**\")\n",
    "            gr.Markdown(\"\"\"\n",
    "            This tab allows you to experiment with different agentic workflows that are predefined. \n",
    "            Each workflow executes a specific task, such as generating blog posts, summarizing documents, or managing tasks.\n",
    "            \"\"\")\n",
    "\n",
    "            # Dropdown for selecting agentic workflows\n",
    "            workflow_name = gr.Dropdown(choices=list(agentic_workflows.keys()), label=\"Choose Agent Workflow\", value=\"Blog Post Generator\")\n",
    "            workflow_display = gr.Textbox(label=\"Workflow Description\", interactive=False, visible=True)\n",
    "            workflow_chatbot = gr.Chatbot(label=\"Agent Workflow Conversation\")\n",
    "            workflow_user_query = gr.Textbox(label=\"Your Query\", placeholder=\"Ask the agent to perform a task...\")\n",
    "            workflow_submit_button = gr.Button(\"Send\")\n",
    "\n",
    "            # Chatbot interaction for agentic workflows\n",
    "            workflow_submit_button.click(fn=agentic_chatbot_conversation, inputs=[workflow_name, workflow_chatbot, workflow_user_query], outputs=[workflow_chatbot, workflow_user_query])\n",
    "\n",
    "# Launch the app\n",
    "demo.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "srf_chatbot_v2",
   "language": "python",
   "name": "srf_chatbot_v2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}