File size: 24,195 Bytes
ad87194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import json
import os
import string
import tempfile
from urllib.parse import urlparse
import requests
from fastapi import UploadFile, File, Form, HTTPException
from fastapi.requests import Request
from fastapi.routing import APIRouter
from supabase import create_client
from core import logging as logger
from core.api.user_management_api import user_management
from core.api.user_management_api import user_management as user_management_pipeline
from core.models.apis_models import *
from core.pipeline.chataipipeline import ChatAIPipeline
from core.services.supabase.user_management.token_limit import token_limit_check
from core.utils.error_handling import create_error_response, create_success_response, raise_http_exception
from core.utils.utils import get_ip_info, encode_to_base64, clean_text, decode_base64
from core.services.supabase.limit.limit_check import LimitChecker
from PyPDF2 import PdfReader
from dotenv import load_dotenv
load_dotenv()
import io

chatai_api_router = APIRouter(tags=["ChatAI"])
supabase_client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_KEY"))
supabase_client_ = supabase_client
ChatAI_pipeline = ChatAIPipeline()
url_limit,pdf_limit,ocr_limit=LimitChecker(supabase_client)

@chatai_api_router.post("/add_text")
async def add_text(request: AddTextRequest):
    logger.info(f">>>AddText API Triggered By {request.vectorstore}<<<")
    try:
        vectorstore, text = request.vectorstore, request.text
        username, chat_bot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        cleaned_text = " ".join(text.split())
        num_token = len(cleaned_text)
        lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chat_bot_name,
                                len_text=num_token)
        text = clean_text(text)
        if lim:
            dct = {
                "output": {"text": text},
                "source": "Text",
            }
            cleaned_text = " ".join(text.split())  # handles unnencessary spaces
            # Count characters
            num_token = len(cleaned_text)
            logger.info(f"Number of token {num_token}")
            dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
            file_name = user_management_pipeline.create_data_source_name(source_name="text", username=username)
            supabase_client.storage.from_("ChatAI").upload(file=dct, path=f"{file_name}_data.json")

            supa = supabase_client.table("ChatAI_ChatbotDataSources").insert(
                {"username": username, "chatbotName": chat_bot_name, "dataSourceName": file_name,
                 "numTokens": num_token, "sourceEndpoint": "/add_text",
                 "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                  f"{file_name}_data.json")}).execute()

            response = create_success_response(200, {"message": "Successfully added the text."})
            logger.info(f">>>Text added successfully for {request.vectorstore}.<<<")

            return response
        else:
            response = create_error_response(400,
                                             "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
            return response

    except Exception as e:
        logger.error(f">>>Error in add_text: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/answer_query")
async def answer_query(request: AnswerQueryRequest, req: Request):
    logger.info(f">>>answer_query API Triggered By {request.vectorstore}<<<")
    try:
        username, chatbot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        ip_address = req.client.host
        city = get_ip_info(ip_address)
        output, followup_questions, source = ChatAI_pipeline.answer_query_(query=request.query,
                                                                              vectorstore=request.vectorstore,
                                                                              llm_model=request.llm_model)
        supa = supabase_client.table("ChatAI_ChatHistory").insert(
            {"username": username, "chatbotName": chatbot_name, "llmModel": request.llm_model,
             "question": request.query, "response": output, "IpAddress": ip_address, "ResponseTokenCount": len(output),
             "vectorstore": request.vectorstore, "City": city}).execute()

        response = create_success_response(200, data={"output": output, "follow_up_questions": followup_questions,
                                                      "source": source})
        logger.info(f">>>Query answered successfully for {request.vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in answer_query: {e} for {request.vectorstore}.<<<")
        raise e


@chatai_api_router.post("/get_links")
async def get_links(request: GetLinksRequest):
    logger.info(f">>>get_links API Triggered By {request.url}<<<")
    try:
        response = ChatAI_pipeline.get_links_(url=request.url, timeout=30)
        response = create_success_response(200, {"urls": response, "source": urlparse(request.url).netloc})
        logger.info(f">>>Links fetched successfully for {request.url}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in get_links: {e} for {request.url}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/image_pdf_text_extraction")
async def image_pdf_text_extraction(vectorstore: str = Form(...)
                                    , pdf: UploadFile = File(...)):
    logger.info(f">>>image_pdf_text_extraction API Triggered By {pdf.filename}<<<")
    try:
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        pdf_bytes = await pdf.read()
        source = pdf.filename
        pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
        doc_len = len(pdf_reader.pages)
        if doc_len<ocr_limit:
            response = ChatAI_pipeline.image_pdf_text_extraction_(image_pdf=pdf_bytes)

            num_tokens = 0
            try:
                num_tokens = len(" ".join([response[x] for x in response]))
            except (KeyError, TypeError, AttributeError):
                pass
            lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                    len_text=num_tokens)
            logger.info(f"this is the {lim}")
            if lim:
                dct = {
                    "output": response,
                    "source": source
                }

                dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
                file_name = user_management_pipeline.create_data_source_name(source_name=source, username=username)
                num_tokens = 0
                try:
                    valid_responses = [response[x] for x in response if response[x] is not None]
                    num_tokens = len(" ".join(valid_responses))
                except Exception as e:
                    num_tokens = 0

                response = supabase_client.storage.from_("ChatAI").upload(file=dct, path=f"{file_name}_data.json")
                supa = supabase_client.table("ChatAI_ChatbotDataSources").insert(
                    {"username": username,
                     "chatbotName": chatbot_name,
                     "dataSourceName": file_name,
                     "numTokens": num_tokens,
                     "sourceEndpoint": "/image_pdf_text_extraction",
                     "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                      f"{file_name}_data.json")}).execute()

                response = create_success_response(200,
                                                   {"source": pdf.filename, "message": "Successfully extracted the text."})
                logger.info(f">>>Text extracted successfully for {pdf.filename}.<<<")
                return response
            else:
                response = create_error_response(402,
                                                 "Exceeding limits, please try with a smaller chunks of PDF or subscribe to our premium plan.")
                return response
        else:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a PDF having less than 20 pages for pdf .")
            return response
    except Exception as e:
        raise e


@chatai_api_router.post("/text_pdf_extraction")
async def text_pdf_extraction(vectorstore: str = Form(...)
                              , pdf: UploadFile = File(...)):
    logger.info(f">>>text_pdf_extraction API Triggered By {pdf.filename}<<<")
    try:
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        content = await pdf.read()
        pdf_reader = PdfReader(io.BytesIO(content))
        doc_len = len(pdf_reader.pages)

        if doc_len < pdf_limit :
            source = pdf.filename
            with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
                temp_file.write(content)
                temp_file_path = temp_file.name

            response = ChatAI_pipeline.text_pdf_extraction_(pdf=temp_file_path)
            numTokens = len(" ".join([response[x] for x in response]))
            lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                    len_text=numTokens)
            os.remove(temp_file_path)
            if lim:
                dct = {
                    "output": response,
                    "source": source
                }
                numTokens = len(" ".join([response[x] for x in response]))
                logger.info(f"Num of tokens {numTokens} text_pdf_extraction")
                dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
                file_name = user_management_pipeline.create_data_source_name(source_name=source, username=username)
                response = supabase_client.storage.from_("ChatAI").upload(file=dct, path=f"{file_name}_data.json")
                response = (
                    supabase_client.table("ChatAI_ChatbotDataSources")
                    .insert({"username": username,
                             "chatbotName": chatbot_name,
                             "dataSourceName": file_name,
                             "numTokens": numTokens,
                             "sourceEndpoint": "/text_pdf_extraction",
                             "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                              f"{file_name}_data.json")})
                    .execute()
                )
                response = create_success_response(200, {"source": source, "message": "Successfully extracted the text."})
                logger.info(f">>>Text extracted successfully for {source}.<<<")
                return response
            else:
                response = create_error_response(402,
                                                 "Exceeding limits, please try with a smaller chunks of PDF or subscribe to our premium plan.")
                return response
        else:
            response = create_error_response(402,
                                             "Exceeding limits, please try with a pdf having pages less than 200.")
            return response

    except Exception as e:
        logger.error(f">>>Error in text_pdf_extraction: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")




@chatai_api_router.post("/website_url_text_extraction")
async def add_website(request: AddWebsiteRequest):
    vectorstore, website_urls, source = request.vectorstore, request.website_urls, request.source

    logger.info(f">>>website_url_text_extraction API Triggered By {request.website_urls}<<<")
    try:
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        total_requested_urls=len(website_urls)

        if total_requested_urls < url_limit :
            text = ChatAI_pipeline.website_url_text_extraction_list_(urls=website_urls)
            num_token = len(" ".join([text[x] for x in text]))

            logger.info(f">>>website_url_text_extraction len{num_token}<<<")
            lim = token_limit_check(supabase_client=supabase_client, username=username, chatbot_name=chatbot_name,
                                    len_text=num_token)
            if not lim:

                response = create_error_response(402,
                                                 "Exceeding limits, please try with a smaller chunks of information or subscribe to our premium plan.")
                return response
            else:
                dct = {
                    "output": text,
                    "source": source
                }

                dct = json.dumps(dct, indent=1).encode("utf-8", errors="replace")
                file_name = user_management_pipeline.create_data_source_name(source_name=urlparse(source).netloc,
                                                                             username=username)
                supabase_client.storage.from_("ChatAI").upload(file=dct, path=f"{file_name}_data.json")
                (
                    supabase_client.table("ChatAI_ChatbotDataSources")
                    .insert({"username": username,
                             "chatbotName": chatbot_name,
                             "dataSourceName": file_name,
                             "numTokens": num_token,
                             "sourceEndpoint": "/fetch_text/urls",
                             "sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"],
                                                              f"{file_name}_data.json")})
                    .execute()
                )
                response = create_success_response(200, {"message": "Successfully fetched the website text."})
                logger.info(f">>>Website text extracted successfully for {request.website_urls}.<<<")
                return response
        else:
            response = create_error_response(402,
                                             "Please select urls less than 50")
            return response
    except Exception as e:
        logger.error(f">>>Error in website_url_text_extraction: {e} for {request.website_urls}.<<<")
        raise HTTPException(status_code=500, detail="Internal Server Error")


@chatai_api_router.get("/get_current_count")
async def get_count(vectorstore: str):
    logger.info(f">>>get_current_count API Triggered By {vectorstore}<<<")
    try:
        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        current_count = user_management_pipeline.get_current_count_(username)

        response = create_success_response(200, {"current_count": current_count})
        logger.info(f">>>Current count fetched successfully for {vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in get_current_count: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/list_chatbots")
async def list_chatbots(request: ListChatbotsRequest):
    logger.info(f">>>list_chatbots API Triggered By {request.username}<<<")
    try:
        chatbots = user_management.list_tables(username=request.username)
        response = create_success_response(200, {"chatbots": chatbots})
        logger.info(f">>>Chatbots listed successfully for {request.username}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in list_chatbots: {e} for {request.username}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/get_chat_history")
async def chat_history(request: GetChatHistoryRequest):
    logger.info(f">>>get_chat_history API Triggered By {request.vectorstore}<<<")
    try:
        _, username, chatbotName = request.vectorstore.split("$", 2)

        history = supabase_client.table("ChatAI_ChatHistory").select(
            "timestamp", "question", "response"
        ).eq("username", username).eq("chatbotName", chatbotName).execute().data

        response = create_success_response(200, {"history": history})
        logger.info(f">>>Chat history fetched successfully for {request.vectorstore}.<<<")
        return response


    except IndexError:
        logger.warning(f"Chat history not found for {request.vectorstore}")
        return create_error_response(404, "Chat history not found for the given chatbot.")

    except Exception as e:
        logger.error(f">>>Error in get_chat_history: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/delete_chatbot")
async def delete_chatbot(request: DeleteChatbotRequest):
    logger.info(f">>>delete_chatbot API Triggered By {request.vectorstore}<<<")
    try:
        username, chatbot_name = request.vectorstore.split("$")[1], request.vectorstore.split("$")[2]
        supabase_client.table('ChatAI_ChatbotInfo').delete().eq('user_id', username).eq('chatbotname',
                                                                                           chatbot_name).execute()
        all_sources = supabase_client.table("ChatAI_ChatbotDataSources").select("*").eq("username", username).eq(
            "chatbotName", chatbot_name).execute().data
        all_sources = [x["sourceContentURL"].split("/")[-1] for x in all_sources]
        supabase_client.table("ChatAI_ChatbotDataSources").delete().eq("username", username).eq("chatbotName",
                                                                                                   chatbot_name).execute()
        for source in all_sources:
            supabase_client.table("ChatAI_Chatbot")
            supabase_client.storage.from_("ChatAI").remove(source)
        user_management.delete_table(table_name=chatbot_name)
        user_management.delete_qdrant_cluster(vectorstorename=request.vectorstore)
        response = create_success_response(200, {"message": "Chatbot deleted successfully"})
        logger.info(f">>>Chatbot deleted successfully for {request.vectorstore}.<<<")
        return response
    except Exception as e:
        logger.error(f">>>Error in delete_chatbot: {e} for {request.vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")






@chatai_api_router.get("/list_chatbot_sources")
async def list_chatbot_sources(vectorstore: str):
    try:
        logger.info(f">>>list_chatbot_sources API Triggered By {vectorstore}<<<")

        username, chatbot_name = vectorstore.split("$")[1], vectorstore.split("$")[2]
        result = supabase_client.table("ChatAI_ChatbotDataSources").select("*").eq("username", username).eq(
            "chatbotName",
            chatbot_name).execute().data

        response = create_success_response(200, {"output": result})
        logger.info(f">>>Chatbot listed successfully for {vectorstore}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in list_chatbot_sources: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.get("/get_data_source")
async def get_data_source(vectorstore: str, source_url: str):
    try:
        logger.info(f">>>get_data_source API Triggered By {vectorstore}<<<")

        r = requests.get(source_url)
        res = encode_to_base64(eval(r.content.decode("utf-8", errors="replace")))

        response = create_success_response(200, {"output": res})

        return response

    except Exception as e:
        logger.error(f">>>Error in get_data_source: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/delete_chatbot_source")
async def delete_chatbot_source(request: DeleteChatbotSourceRequest):
    vectorstore, data_source_name = request.vectorstore, request.data_source_name
    try:

        response = supabase_client.table("ChatAI_ChatbotDataSources").delete().eq("dataSourceName",
                                                                                     data_source_name).execute()
        response = supabase_client.storage.from_('ChatAI').remove(f"{data_source_name}_data.json")

        response = create_success_response(200, {"output": f"Successfully deleted the {data_source_name} data source."})

        logger.info(f">>>Data source deleted successfully for {vectorstore}.<<<")
        return response


    except Exception as e:
        logger.error(f">>>Error in delete_chatbot_source: {e} for {vectorstore}.<<<")
        raise_http_exception(500, "Internal Server Error")


@chatai_api_router.post("/train_chatbot")
async def train_chatbot(request: TrainChatbotRequest):
    vectorstore, url_sources = request.vectorstore, request.urls
    logger.info(f">>>train_chatbot API Triggered By {vectorstore}<<<")
    try:
        texts = []
        sources = []
        fileTypes = [
            supabase_client.table("ChatAI_ChatbotDataSources").select("sourceEndpoint").eq("sourceContentURL",
                                                                                              x).execute().data[0][
                "sourceEndpoint"] for x in url_sources]
        for source, fileType in zip(url_sources, fileTypes):
            if ((fileType == "/text_pdf_extraction") | (fileType == "/image_pdf_text_extraction")):
                logger.info(f"Source is {source}")
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]
                fileSource = file["source"]
                texts.append(".".join(
                    [content[key] for key in content.keys()]).replace(
                    "\n", " "))

                sources.append(fileSource)
            elif fileType == "/add_text" or fileType == "/add_qa_pair":
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]["text"]
                fileSource = file["source"]
                texts.append(content.replace("\n", " "))
                sources.append(fileSource)
            elif ((fileType == "/fetch_text/urls") | (fileType == "/youtube_transcript")):
                r = requests.get(source)
                file = eval(r.content.decode("utf-8", errors="replace"))
                content = file["output"]
                fileSource = file["source"]
                texts.append(".".join(
                    [content[key] for key in content.keys()]).replace(
                    "\n", " "))
                sources.append(fileSource)
            else:
                pass
        texts = [(text, source) for text, source in zip(texts, sources)]
        ChatAI_pipeline.add_document_(texts, vectorstore)
        response = create_success_response(200, {"message": "Chatbot trained successfully."})
        logger.info(f">>>Chatbot trained successfully for {vectorstore}.<<<")

        return response


    except Exception as e:
        logger.error(f">>>Error in train_chatbot: {e} for {vectorstore}.<<<")
        raise e





@chatai_api_router.post("/new_chatbot")
async def new_chatbot(request: NewChatbotRequest):
    logger.info(f">>> new_chatbot API Triggered <<<")
    try:
        response = user_management.new_chatbot_(chatbot_name=request.chatbot_name, username=request.username)
        logger.info(f">>> Chatbot created successfully for {request.username}.<<<")
        return response

    except Exception as e:
        logger.error(f">>>Error in new_chatbot: {e} for {request.username}.<<<")
        raise_http_exception(500, "Internal Server Error")