File size: 6,505 Bytes
ad87194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
from langchain.memory import ChatMessageHistory
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.document_compressors import JinaRerank
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_groq import ChatGroq
from core.services.vector_db.qdrent.upload_document import answer_query_from_existing_collection
os.environ["JINA_API_KEY"] = os.getenv("JINA_API")
class AnswerQuery:
def __init__(self, prompt, vector_embedding, sparse_embedding, follow_up_prompt, json_parser):
self.chat_history_store = {}
self.compressor = JinaRerank(model="jina-reranker-v2-base-multilingual")
self.vector_embed = vector_embedding
self.sparse_embed = sparse_embedding
self.prompt = prompt
self.follow_up_prompt = follow_up_prompt
self.json_parser = json_parser
def format_docs(self, docs: str):
global sources
global temp_context
sources = []
context = ""
for doc in docs:
context += f"{doc.page_content}\n\n\n"
source = doc.metadata
source = source["source"]
sources.append(source)
if context == "":
context = "No context found"
else:
pass
sources = list(set(sources))
temp_context = context
return context
def answer_query(self, query: str, vectorstore: str, llmModel: str = "llama-3.3-70b-versatile"):
global sources
global temp_context
vector_store_name = vectorstore
vector_store = answer_query_from_existing_collection(vector_embed=self.vector_embed,
sparse_embed=self.sparse_embed,
vectorstore=vectorstore)
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 10, "fetch_k": 20})
compression_retriever = ContextualCompressionRetriever(
base_compressor=self.compressor, base_retriever=retriever
)
brain_chain = (
{"context": RunnableLambda(lambda x: x["question"]) | compression_retriever | RunnableLambda(
self.format_docs),
"question": RunnableLambda(lambda x: x["question"]),
"chatHistory": RunnableLambda(lambda x: x["chatHistory"])}
| self.prompt
| ChatGroq(model=llmModel, temperature=0.75, max_tokens=512)
| StrOutputParser()
)
message_chain = RunnableWithMessageHistory(
brain_chain,
self.get_session_history,
input_messages_key="question",
history_messages_key="chatHistory"
)
chain = RunnablePassthrough.assign(messages_trimmed=self.trim_messages) | message_chain
follow_up_chain = self.follow_up_prompt | ChatGroq(model_name="llama-3.3-70b-versatile",
temperature=0) | self.json_parser
output = chain.invoke(
{"question": query},
{"configurable": {"session_id": vector_store_name}}
)
follow_up_questions = follow_up_chain.invoke({"context": temp_context})
return output, follow_up_questions, sources
async def answer_query_stream(self, query: str, vectorstore: str, llmModel):
global sources
global temp_context
vector_store_name = vectorstore
vector_store = answer_query_from_existing_collection(
vector_embed=self.vector_embed,
sparse_embed=self.sparse_embed,
vectorstore=vectorstore
)
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 10, "fetch_k": 20})
compression_retriever = ContextualCompressionRetriever(
base_compressor=self.compressor,
base_retriever=retriever
)
brain_chain = (
{
"context": RunnableLambda(lambda x: x["question"]) | compression_retriever | RunnableLambda(
self.format_docs),
"question": RunnableLambda(lambda x: x["question"]),
"chatHistory": RunnableLambda(lambda x: x["chatHistory"])
}
| self.prompt
| ChatGroq(
model=llmModel,
temperature=0.75,
max_tokens=512,
streaming=True
)
| StrOutputParser()
)
message_chain = RunnableWithMessageHistory(
brain_chain,
self.get_session_history,
input_messages_key="question",
history_messages_key="chatHistory"
)
chain = RunnablePassthrough.assign(messages_trimmed=self.trim_messages) | message_chain
async for chunk in chain.astream(
{"question": query},
{"configurable": {"session_id": vector_store_name}}
):
yield {
"type": "main_response",
"content": chunk
}
follow_up_chain = self.follow_up_prompt | ChatGroq(
model_name="llama-3.3-70b-versatile",
temperature=0
) | self.json_parser
follow_up_questions = await follow_up_chain.ainvoke({"context": temp_context})
yield {
"type": "follow_up_questions",
"content": follow_up_questions
}
yield {
"type": "sources",
"content": sources
}
def trim_messages(self, chain_input):
for store_name in self.chat_history_store:
messages = self.chat_history_store[store_name].messages
if len(messages) <= 1:
pass
else:
self.chat_history_store[store_name].clear()
for message in messages[-1:]:
self.chat_history_store[store_name].add_message(message)
return True
def get_session_history(self, session_id: str) -> BaseChatMessageHistory:
if session_id not in self.chat_history_store:
self.chat_history_store[session_id] = ChatMessageHistory()
return self.chat_history_store[session_id]
|