from flask import Flask, request, jsonify import joblib import numpy as np print("Hello") # Load the scaler and models scaler = joblib.load('scaler.joblib') models = {target: joblib.load(f'svm_model_{target}.joblib') for target in ['processing', 'perception', 'input', 'understanding']} app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): data = request.json.get('user_input') if not data: return jsonify({"error": "No input provided"}), 400 user_input_array = np.array(data).reshape(1, -1) user_input_scaled = scaler.transform(user_input_array) predictions = {target: model.predict(user_input_scaled)[0] for target, model in models.items()} return jsonify(predictions) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)