Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,38 @@
|
|
| 1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import torch
|
| 4 |
-
|
| 5 |
-
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
|
| 6 |
-
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for anyother model on 🤗HuggingFace."
|
| 7 |
-
examples = [["How are you?"]]
|
| 8 |
-
|
| 9 |
-
# Set the padding token to be used and initialize the model
|
| 10 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 11 |
-
tokenizer.padding_side = 'left'
|
| 12 |
-
|
| 13 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 14 |
import gradio as gr
|
| 15 |
import torch
|
| 16 |
-
|
| 17 |
-
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
|
| 18 |
-
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together."
|
| 19 |
-
examples = [["How are you?"]]
|
| 20 |
-
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 22 |
tokenizer.padding_side = 'left'
|
| 23 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 24 |
|
| 25 |
-
class ChatBot:
|
| 26 |
-
def __init__(self):
|
| 27 |
-
self.history = []
|
| 28 |
|
| 29 |
-
def predict(self, input):
|
| 30 |
-
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
return response
|
| 36 |
|
| 37 |
-
bot = ChatBot()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
iface = gr.Interface(
|
| 40 |
-
fn=bot.predict,
|
| 41 |
-
title=title,
|
| 42 |
-
description=description,
|
| 43 |
-
examples=examples,
|
| 44 |
-
inputs="text",
|
| 45 |
-
outputs="text",
|
| 46 |
-
theme="ParityError/Anime"
|
| 47 |
-
)
|
| 48 |
|
| 49 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 6 |
tokenizer.padding_side = 'left'
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 8 |
|
| 9 |
+
class ChatBot:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
self.history = []
|
| 12 |
|
| 13 |
+
def predict(self, input):
|
| 14 |
+
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
|
| 15 |
+
flat_history = [item for sublist in self.history for item in sublist]
|
| 16 |
+
bot_input_ids = torch.cat([torch.tensor(flat_history), new_user_input_ids], dim=-1) if self.history else new_user_input_ids
|
| 17 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=2000, pad_token_id=tokenizer.eos_token_id)
|
| 18 |
+
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
|
| 19 |
+
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 20 |
return response
|
| 21 |
|
| 22 |
+
bot = ChatBot()
|
| 23 |
+
|
| 24 |
+
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
|
| 25 |
+
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace."
|
| 26 |
+
examples = [["How are you?"]]
|
| 27 |
|
| 28 |
+
iface = gr.Interface(
|
| 29 |
+
fn=bot.predict,
|
| 30 |
+
title=title,
|
| 31 |
+
description=description,
|
| 32 |
+
examples=examples,
|
| 33 |
+
inputs="text",
|
| 34 |
+
outputs="text",
|
| 35 |
+
theme="ParityError/Anime"
|
| 36 |
+
)
|
| 37 |
|
| 38 |
+
iface.launch()
|