Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -70,23 +70,31 @@ peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="hf_dQUWWpJJy
|
|
| 70 |
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
|
| 71 |
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
|
| 72 |
# Remove the memory function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
class ChatBot:
|
| 74 |
def __init__(self):
|
|
|
|
| 75 |
self.history = []
|
| 76 |
|
| 77 |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
| 78 |
-
# Combine user input
|
| 79 |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
| 80 |
|
| 81 |
-
# Encode
|
| 82 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
| 83 |
|
| 84 |
# Generate a response using the PEFT model
|
| 85 |
-
response = peft_model.generate(
|
| 86 |
|
| 87 |
-
# Decode
|
| 88 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
bot = ChatBot()
|
| 92 |
|
|
|
|
| 70 |
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
|
| 71 |
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
|
| 72 |
# Remove the memory function
|
| 73 |
+
# ... (previous code)
|
| 74 |
+
|
| 75 |
+
class ChatBot:
|
| 76 |
+
def __init__(self):
|
| 77 |
+
self.history = []
|
| 78 |
+
|
| 79 |
class ChatBot:
|
| 80 |
def __init__(self):
|
| 81 |
+
# Initialize the ChatBot class with an empty history
|
| 82 |
self.history = []
|
| 83 |
|
| 84 |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
| 85 |
+
# Combine the user's input with the system prompt
|
| 86 |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
| 87 |
|
| 88 |
+
# Encode the formatted input using the tokenizer
|
| 89 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
| 90 |
|
| 91 |
# Generate a response using the PEFT model
|
| 92 |
+
response = peft_model.generate(user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
| 93 |
|
| 94 |
+
# Decode the generated response to text
|
| 95 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
| 96 |
+
|
| 97 |
+
return response_text # Return the generated response
|
| 98 |
|
| 99 |
bot = ChatBot()
|
| 100 |
|