Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import torch | |
title = "EZChat" | |
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT-medium)" | |
examples = [["How are you?"]] | |
# Set the padding token to be used and initialize the model | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
tokenizer.padding_side = 'left' | |
tokenizer.add_special_tokens({'pad_token': '[EOS]'}) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Model | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
#predict | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode( | |
input + tokenizer.eos_token, padding=True, truncation=True, return_tensors="pt" | |
) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.tensor(history), new_user_input_ids], dim=-1) if history else new_user_input_ids | |
# generate a response | |
chat_history_ids = model.generate( | |
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id | |
) | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
return response, chat_history_ids.tolist()[0] | |
iface = gr.Interface( | |
fn=predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", gr.inputs.Slider(0, 4000, default=2000, label='Chat History')], | |
outputs=["text", "text"], | |
theme="ParityError/Anime", | |
) | |
iface.launch() |