Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import torch | |
title = "EZChat" | |
description = "A State-of-the-Art Large-scale Pretrained Response generation model Qwen's 7B-Chat" | |
examples = [["How are you?"]] | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # Different generation length, top_p and other related super parameters can be specified. | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode( | |
if input is not None and tokenizer.eos_token is not None: | |
combined_input = input + tokenizer.eos_token | |
# Rest of your code using combined_input | |
else: | |
# Handle the case where input or tokenizer.eos_token is None | |
print("Input or eos_token is None. Cannot concatenate.") | |
) | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate( | |
bot_input_ids, max_length=20, pad_token_id=tokenizer.eos_token_id | |
).tolist() | |
# convert the tokens to text, and then split the responses into lines | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
# print('decoded_response-->>'+str(response)) | |
response = [ | |
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) | |
] # convert to tuples of list | |
# print('response-->>'+str(response)) | |
return response, history | |
gr.Interface( | |
fn=predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"], | |
theme="ParityError/Anime", | |
).launch() |