GaiaMiniMed / app.py
Tonic's picture
Update app.py
813bedf
raw
history blame
1.96 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "EZChat"
description = "A State-of-the-Art Large-scale Pretrained Response generation model Qwen's 7B-Chat"
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) # Different generation length, top_p and other related super parameters can be specified.
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(
if input is not None and tokenizer.eos_token is not None:
combined_input = input + tokenizer.eos_token
# Rest of your code using combined_input
else:
# Handle the case where input or tokenizer.eos_token is None
print("Input or eos_token is None. Cannot concatenate.")
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids, max_length=20, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="ParityError/Anime",
).launch()