Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import torch | |
title = "EZChat" | |
description = "A State-of-the-Art Large-scale Pretrained Response generation model Qwen's 7B-Chat" | |
examples = [["How are you?"]] | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True).eval() | |
history = [] # Initialize chat history | |
def predict(input, history=history): | |
if input is not None and tokenizer.eos_token is not None: | |
combined_input = input + tokenizer.eos_token | |
new_user_input_ids = tokenizer.encode(combined_input, return_tensors="pt") | |
# Append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# Generate a response | |
generated_response_ids = model.generate( | |
bot_input_ids, max_length=20, pad_token_id=tokenizer.eos_token_id | |
) | |
# Convert the generated response tokens to text | |
response = tokenizer.decode(generated_response_ids[0], skip_special_tokens=True) | |
# Append the user input and generated response to the chat history | |
history.extend(new_user_input_ids[0].tolist()) | |
history.extend(generated_response_ids[0].tolist()) | |
return response, history | |
else: | |
print("Input or eos_token is None. Cannot concatenate.") | |
gr.Interface( | |
fn=predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "text"], | |
outputs=["text", "text"], | |
theme="ParityError/Anime", | |
).launch() | |