GaiaMiniMed / app.py
Tonic's picture
Update app.py
5debb29
raw
history blame
1.67 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "EZChat"
description = "A State-of-the-Art Large-scale Pretrained Response generation model Qwen's 7B-Chat"
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True).eval()
history = [] # Initialize chat history
def predict(input, history=history):
if input is not None and tokenizer.eos_token is not None:
combined_input = input + tokenizer.eos_token
new_user_input_ids = tokenizer.encode(combined_input, return_tensors="pt")
# Append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# Generate a response
generated_response_ids = model.generate(
bot_input_ids, max_length=20, pad_token_id=tokenizer.eos_token_id
)
# Convert the generated response tokens to text
response = tokenizer.decode(generated_response_ids[0], skip_special_tokens=True)
# Append the user input and generated response to the chat history
history.extend(new_user_input_ids[0].tolist())
history.extend(generated_response_ids[0].tolist())
return response, history
else:
print("Input or eos_token is None. Cannot concatenate.")
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"],
outputs=["text", "text"],
theme="ParityError/Anime",
).launch()