Spaces:
Runtime error
Runtime error
File size: 1,902 Bytes
e1547c3 d483f6d e1547c3 cb71bf6 d483f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for anyother model on 🤗HuggingFace."
examples = [["How are you?"]]
# Set the padding token to be used and initialize the model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
tokenizer.padding_side = 'left'
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together."
examples = [["How are you?"]]
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
tokenizer.padding_side = 'left'
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def predict(input, history=[]):
new_user_input_ids = tokenizer.encode(input, return_tensors="pt")
bot_input_ids = torch.cat([torch.tensor(history), new_user_input_ids], dim=-1) if history else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
iface = gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs="text",
outputs="text",
theme="ParityError/Anime",
)
iface.launch() |