Spaces:
Paused
Paused
File size: 1,460 Bytes
e15f1e0 9a229a7 993e75e 75eaa7d 1c8cf8d 993e75e 9a229a7 ad59b0f e15f1e0 9a229a7 01c2292 9a229a7 01c2292 a457627 e15f1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from transformers import BertForQuestionAnswering
from transformers import BertTokenizerFast
import torch
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained("bert-base-uncased")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_prediction(context, question):
inputs = tokenizer.encode_plus(question, context, return_tensors='pt').to(device)
outputs = model(**inputs)
answer_start = torch.argmax(outputs[0])
answer_end = torch.argmax(outputs[1]) + 1
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
return answer
def question_answer(context, question):
prediction = get_prediction(context,question)
return prediction
def split(texts):
words = word_tokenize(texts)
context, question = '', ''
act = False
for w in words:
if w == '///':
act = True
if act == False:
context += w + ' '
else:
if w == '///':
w = ''
question += w + ' '
context = context[:-1]
question = question[1:-1]
return context, question
def greet(texts):
context, question = split(texts)
answer = question_answer(context, question)
return answer
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch() |