Spaces:
Build error
Build error
import gradio as gr | |
import geopandas as gpd | |
import pandas as pd | |
import os | |
from shapely.ops import unary_union | |
#from datasets import load_dataset | |
#ds = load_dataset('psalama/NYC_sensitive_sites', data_files=data_files) | |
# Import functions from modules in data.py and plot.py | |
from data import get_gdf_from_feature_layer, process_buildings, get_max_extent | |
from plot import create_plot | |
def ss_intersect(geojson1, ss_geoselect, multiplier_factor, default_building_height): | |
# Read the GeoJSON files | |
input_gdf = gpd.read_file(geojson1.name) | |
# Check that CRS is EPSG:4326 | |
if input_gdf.crs.to_epsg() != 4326: | |
raise ValueError("Input GeoJSON files must be in CRS EPSG:4326") | |
if ss_geoselect==0: | |
sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Properties.geojson") | |
else: | |
sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Zones.geojson") | |
default_building_height_m = default_building_height * 0.3048 | |
buffers, intersected_sites, intersection_desc = process_buildings(input_gdf, sensitive_sites_gdf, default_building_height_m, multiplier_factor) | |
# Concatenate all buffer GeoDataFrames and save as a GeoJSON file | |
buffers_gdf = pd.concat(buffers, ignore_index=True) | |
buffers_gdf = buffers_gdf.to_crs("EPSG:4326") | |
buffers_gdf.to_file("building_buffers.geojson", driver='GeoJSON') | |
# Concatenate all intersected sensitive sites and save as a GeoJSON file | |
if intersected_sites: | |
intersected_sites_gdf = pd.concat(intersected_sites, ignore_index=True) | |
intersected_sites_gdf = intersected_sites_gdf.to_crs("EPSG:4326") | |
else: #if there aren't any intersections, return an empty geojson | |
intersected_sites_gdf = gpd.read_file("files/No_intersecting_buildings.geojson") | |
print("No buildings are in the vicinity of any sensitive sites.") | |
intersected_sites_gdf.to_file("intersected_sensitive_sites.geojson", driver='GeoJSON') | |
# Perform the union operation if there is more than one buffer | |
if len(buffers) > 1: | |
# Perform a unary union on the geometry column of the GeoDataFrame | |
buffer_union = unary_union(buffers_gdf['geometry']) | |
# Create a new GeoDataFrame from the union result | |
buffer_union_gdf = gpd.GeoDataFrame(geometry=[buffer_union], crs="EPSG:4326") | |
# Save the union GeoDataFrame as a GeoJSON file | |
buffer_union_gdf.to_file("buffer_union.geojson", driver='GeoJSON') | |
# Calculate the maximum extent | |
extent = get_max_extent(input_gdf, buffers_gdf) | |
lots_url = "https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/MAPPLUTO/FeatureServer/0" # Access MapPLUTO # Eventually should be a checkbox | |
lots_gdf = get_gdf_from_feature_layer(lots_url) | |
# Create and save the plot - which is the output image | |
create_plot('output_image.png', extent, lots_gdf, sensitive_sites_gdf, buffer_union_gdf, intersected_sites_gdf, input_gdf) | |
# Return the image, geojson files, and text description | |
return 'output_image.png', "building_buffers.geojson", "buffer_union.geojson", intersection_desc | |
iface = gr.Interface( | |
fn=ss_intersect, | |
inputs=[ | |
gr.inputs.File(label="Building Footprints GeoJSON"), | |
gr.Radio(["Parks Properties", "Park Zones"], label="Which Sensitive Sites?", info="From NYC DPR", type="index"), | |
gr.inputs.Slider(minimum=0.0, maximum=10.0, default=4.3, label="Building Height Multiplier"), | |
gr.inputs.Number(default=200, label="Default Building Height"), #Can I make this optional? | |
], | |
outputs=[ | |
gr.outputs.Image(type="pil", label="Result Image"), | |
gr.outputs.File(label="Building Buffers"), | |
gr.outputs.File(label="Union of Building Buffers"), | |
gr.outputs.Textbox(label="Building intersection descriptions"), | |
], | |
examples=[ | |
["files/building4test.geojson", "Parks Properties", 4.3, 200], | |
["files/building4test.geojson", "Park Zones", 4.3, 900], | |
], | |
title="Shadow Proximity", | |
description="Upload proposed building footprints in a GeoJSON file and select a numeric value to get the building proximity prediction.", | |
) | |
iface.launch() |