psalama's picture
Update app.py
954f7a1
raw
history blame
4.19 kB
import gradio as gr
import geopandas as gpd
import pandas as pd
import os
from shapely.ops import unary_union
#from datasets import load_dataset
#ds = load_dataset('psalama/NYC_sensitive_sites', data_files=data_files)
# Import functions from modules in data.py and plot.py
from data import get_gdf_from_feature_layer, process_buildings, get_max_extent
from plot import create_plot
def ss_intersect(geojson1, ss_geoselect, multiplier_factor, default_building_height):
# Read the GeoJSON files
input_gdf = gpd.read_file(geojson1.name)
# Check that CRS is EPSG:4326
if input_gdf.crs.to_epsg() != 4326:
raise ValueError("Input GeoJSON files must be in CRS EPSG:4326")
if ss_geoselect==0:
sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Properties.geojson")
else:
sensitive_sites_gdf = gpd.read_file("sensitive_sites/NYC_Parks_Zones.geojson")
default_building_height_m = default_building_height * 0.3048
buffers, intersected_sites, intersection_desc = process_buildings(input_gdf, sensitive_sites_gdf, default_building_height_m, multiplier_factor)
# Concatenate all buffer GeoDataFrames and save as a GeoJSON file
buffers_gdf = pd.concat(buffers, ignore_index=True)
buffers_gdf = buffers_gdf.to_crs("EPSG:4326")
buffers_gdf.to_file("building_buffers.geojson", driver='GeoJSON')
# Concatenate all intersected sensitive sites and save as a GeoJSON file
if intersected_sites:
intersected_sites_gdf = pd.concat(intersected_sites, ignore_index=True)
intersected_sites_gdf = intersected_sites_gdf.to_crs("EPSG:4326")
else: #if there aren't any intersections, return an empty geojson
intersected_sites_gdf = gpd.read_file("files/No_intersecting_buildings.geojson")
print("No buildings are in the vicinity of any sensitive sites.")
intersected_sites_gdf.to_file("intersected_sensitive_sites.geojson", driver='GeoJSON')
# Perform the union operation if there is more than one buffer
if len(buffers) > 1:
# Perform a unary union on the geometry column of the GeoDataFrame
buffer_union = unary_union(buffers_gdf['geometry'])
# Create a new GeoDataFrame from the union result
buffer_union_gdf = gpd.GeoDataFrame(geometry=[buffer_union], crs="EPSG:4326")
# Save the union GeoDataFrame as a GeoJSON file
buffer_union_gdf.to_file("buffer_union.geojson", driver='GeoJSON')
# Calculate the maximum extent
extent = get_max_extent(input_gdf, buffers_gdf)
lots_url = "https://services5.arcgis.com/GfwWNkhOj9bNBqoJ/arcgis/rest/services/MAPPLUTO/FeatureServer/0" # Access MapPLUTO # Eventually should be a checkbox
lots_gdf = get_gdf_from_feature_layer(lots_url)
# Create and save the plot - which is the output image
create_plot('output_image.png', extent, lots_gdf, sensitive_sites_gdf, buffer_union_gdf, intersected_sites_gdf, input_gdf)
# Return the image, geojson files, and text description
return 'output_image.png', "building_buffers.geojson", "buffer_union.geojson", intersection_desc
iface = gr.Interface(
fn=ss_intersect,
inputs=[
gr.inputs.File(label="Building Footprints GeoJSON"),
gr.Radio(["Parks Properties", "Park Zones"], label="Which Sensitive Sites?", info="From NYC DPR", type="index"),
gr.inputs.Slider(minimum=0.0, maximum=10.0, default=4.3, label="Building Height Multiplier"),
gr.inputs.Number(default=200, label="Default Building Height"), #Can I make this optional?
],
outputs=[
gr.outputs.Image(type="pil", label="Result Image"),
gr.outputs.File(label="Building Buffers"),
gr.outputs.File(label="Union of Building Buffers"),
gr.outputs.Textbox(label="Building intersection descriptions"),
],
examples=[
["files/building4test.geojson", "Parks Properties", 4.3, 200],
["files/building4test.geojson", "Park Zones", 4.3, 900],
],
title="Shadow Proximity",
description="Upload proposed building footprints in a GeoJSON file and select a numeric value to get the building proximity prediction.",
)
iface.launch()